当前位置:网站首页>Python filtering sensitive word records
Python filtering sensitive word records
2020-11-06 01:28:00 【Elementary school students in IT field】
sketch :
On sensitive word filtering can be seen as a text anti spam algorithm , for example
subject : Sensitive word text file filtered_words.txt, When the user enters sensitive words , Then use asterisk * Replace , For example, when the user enters 「 Beijing is a good city 」, Has become a 「** It's a good city 」
Code :
#coding=utf-8
def filterwords(x):
with open(x,'r') as f:
text=f.read()
print text.split('\n')
userinput=raw_input('myinput:')
for i in text.split('\n'):
if i in userinput:
replace_str='*'*len(i.decode('utf-8'))
word=userinput.replace(i,replace_str)
return word
print filterwords('filtered_words.txt')
Another example is the anti yellow series :
Develop sensitive word filters , Prompt users to enter comments , If the user's input contains special characters :
List of sensitive words li = [" Aoi Sora "," Tokyo fever ",” Wutenglan ”,” Yui Hatano ”]
Replace the sensitive words in the user's input with ***, And add it to a list ; If the user's input doesn't have sensitive words , Add it directly to the list above .
content = input(' Please enter your content :')
li = [" Aoi Sora "," Tokyo fever "," Wutenglan "," Yui Hatano "]
i = 0
while i < 4:
for li[i] in content:
li1 = content.replace(' Aoi Sora ','***')
li2 = li1.replace(' Tokyo fever ','***')
li3 = li2.replace(' Wutenglan ','***')
li4 = li3.replace(' Yui Hatano ','***')
else:
pass
i += 1
Practical cases :
Together bat Interview questions : Quick replacement 10 One hundred million titles 5 Ten thousand sensitive words , What are the solutions ?
There are a billion titles , In a file , One title per line . Yes 5 Ten thousand sensitive words , There is another file . Write a program to filter out all sensitive words in all headings , Save to another file .
1、DFA Filter sensitive words algorithm
In the algorithm of text filtering ,DFA Is a better algorithm .DFA namely Deterministic Finite Automaton, That is to say, definite finite automata .
The core of the algorithm is to establish many sensitive word trees based on sensitive words .
python Realization DFA Algorithm :
# -*- coding:utf-8 -*-
import time
time1=time.time()
# DFA Algorithm
class DFAFilter():
def __init__(self):
self.keyword_chains = {}
self.delimit = '\x00'
def add(self, keyword):
keyword = keyword.lower()
chars = keyword.strip()
if not chars:
return
level = self.keyword_chains
for i in range(len(chars)):
if chars[i] in level:
level = level[chars[i]]
else:
if not isinstance(level, dict):
break
for j in range(i, len(chars)):
level[chars[j]] = {}
last_level, last_char = level, chars[j]
level = level[chars[j]]
last_level[last_char] = {self.delimit: 0}
break
if i == len(chars) - 1:
level[self.delimit] = 0
def parse(self, path):
with open(path,encoding='utf-8') as f:
for keyword in f:
self.add(str(keyword).strip())
def filter(self, message, repl="*"):
message = message.lower()
ret = []
start = 0
while start < len(message):
level = self.keyword_chains
step_ins = 0
for char in message[start:]:
if char in level:
step_ins += 1
if self.delimit not in level[char]:
level = level[char]
else:
ret.append(repl * step_ins)
start += step_ins - 1
break
else:
ret.append(message[start])
break
else:
ret.append(message[start])
start += 1
return ''.join(ret)
if __name__ == "__main__":
gfw = DFAFilter()
path="F:/ Text anti spam algorithm /sensitive_words.txt"
gfw.parse(path)
text=" Xinjiang riot apple new product launch "
result = gfw.filter(text)
print(text)
print(result)
time2 = time.time()
print(' The total time is :' + str(time2 - time1) + 's')
Running effect :
Xinjiang riot apple new product launch
**** Apple launch **
The total time is :0.0010344982147216797s
2、AC Automata filter sensitive words algorithm
AC automata : A common example is to give n Word , Give me another paragraph that contains m One character article , Let you find out how many words appear in the article .
Simply speak ,AC Automata is a dictionary tree +kmp Algorithm + Mismatch pointer
# -*- coding:utf-8 -*-
import time
time1=time.time()
# AC Automata algorithm
class node(object):
def __init__(self):
self.next = {}
self.fail = None
self.isWord = False
self.word = ""
class ac_automation(object):
def __init__(self):
self.root = node()
# Add sensitive word function
def addword(self, word):
temp_root = self.root
for char in word:
if char not in temp_root.next:
temp_root.next[char] = node()
temp_root = temp_root.next[char]
temp_root.isWord = True
temp_root.word = word
# Failed pointer function
def make_fail(self):
temp_que = []
temp_que.append(self.root)
while len(temp_que) != 0:
temp = temp_que.pop(0)
p = None
for key,value in temp.next.item():
if temp == self.root:
temp.next[key].fail = self.root
else:
p = temp.fail
while p is not None:
if key in p.next:
temp.next[key].fail = p.fail
break
p = p.fail
if p is None:
temp.next[key].fail = self.root
temp_que.append(temp.next[key])
# Find sensitive word functions
def search(self, content):
p = self.root
result = []
currentposition = 0
while currentposition < len(content):
word = content[currentposition]
while word in p.next == False and p != self.root:
p = p.fail
if word in p.next:
p = p.next[word]
else:
p = self.root
if p.isWord:
result.append(p.word)
p = self.root
currentposition += 1
return result
# Load sensitive lexicon functions
def parse(self, path):
with open(path,encoding='utf-8') as f:
for keyword in f:
self.addword(str(keyword).strip())
# The substitution function of sensitive words
def words_replace(self, text):
"""
:param ah: AC automata
:param text: Text
:return: Filter the text after sensitive words
"""
result = list(set(self.search(text)))
for x in result:
m = text.replace(x, '*' * len(x))
text = m
return text
if __name__ == '__main__':
ah = ac_automation()
path='F:/ Text anti spam algorithm /sensitive_words.txt'
ah.parse(path)
text1=" Xinjiang riot apple new product launch "
text2=ah.words_replace(text1)
print(text1)
print(text2)
time2 = time.time()
print(' The total time is :' + str(time2 - time1) + 's')
Running results :
Xinjiang riot apple new product launch
**** Apple launch **
The total time is :0.0010304450988769531s
版权声明
本文为[Elementary school students in IT field]所创,转载请带上原文链接,感谢
边栏推荐
- Three Python tips for reading, creating and running multiple files
- Grouping operation aligned with specified datum
- Working principle of gradient descent algorithm in machine learning
- 100元扫货阿里云是怎样的体验?
- 一篇文章教会你使用HTML5 SVG 标签
- PHP应用对接Justswap专用开发包【JustSwap.PHP】
- vue任意关系组件通信与跨组件监听状态 vue-communication
- Skywalking series blog 5-apm-customize-enhance-plugin
- 6.1.2 handlermapping mapping processor (2) (in-depth analysis of SSM and project practice)
- git rebase的時候捅婁子了,怎麼辦?線上等……
猜你喜欢
Subordination judgment in structured data
If PPT is drawn like this, can the defense of work report be passed?
I'm afraid that the spread sequence calculation of arbitrage strategy is not as simple as you think
Brief introduction and advantages and disadvantages of deepwalk model
有了这个神器,快速告别垃圾短信邮件
This article will introduce you to jest unit test
2018中国云厂商TOP5:阿里云、腾讯云、AWS、电信、联通 ...
小程序入门到精通(二):了解小程序开发4个重要文件
What is the side effect free method? How to name it? - Mario
Python download module to accelerate the implementation of recording
随机推荐
Mongodb (from 0 to 1), 11 days mongodb primary to intermediate advanced secret
一篇文章带你了解CSS对齐方式
vue-codemirror基本用法:实现搜索功能、代码折叠功能、获取编辑器值及时验证
I've been rejected by the product manager. Why don't you know
如何玩转sortablejs-vuedraggable实现表单嵌套拖拽功能
The difference between Es5 class and ES6 class
NLP model Bert: from introduction to mastery (2)
Python crawler actual combat details: crawling home of pictures
Save the file directly to Google drive and download it back ten times faster
git rebase的時候捅婁子了,怎麼辦?線上等……
Python download module to accelerate the implementation of recording
The choice of enterprise database is usually decided by the system architect - the newstack
一篇文章带你了解CSS 分页实例
Summary of common algorithms of linked list
How to use Python 2.7 after installing anaconda3?
Vue 3 responsive Foundation
Analysis of etcd core mechanism
带你学习ES5中新增的方法
中小微企业选择共享办公室怎么样?
Existence judgment in structured data