当前位置:网站首页>Bidirectional RNN and stacked bidirectional RNN
Bidirectional RNN and stacked bidirectional RNN
2022-07-05 10:49:00 【Don't wait for shy brother to develop】
two-way RNN Two way with stacking RNN
1、 two-way RNN
two-way RNN(Bidirectional RNN) The structure of is shown in the figure below .
h t → = f ( W → x t + V → h t − 1 → + b → ) h t ← = f ( W ← x t + V ← h t − 1 ← + b ← ) y t = g ( U [ h t → ; h t ← ] + c ) \overrightarrow{h_t}=f(\overrightarrow{W}x_t+\overrightarrow{V}\overrightarrow{h_{t-1}}+\overrightarrow{b})\\ \overleftarrow{h_t}=f(\overleftarrow{W}x_t+\overleftarrow{V}\overleftarrow{h_{t-1}}+\overleftarrow{b})\\ y_t=g(U[\overrightarrow{h_t};\overleftarrow{h_t}]+c) ht=f(Wxt+Vht−1+b)ht=f(Wxt+Vht−1+b)yt=g(U[ht;ht]+c)
there RNN You can use either RNN structure SimpleRNN,LSTM or GRU. Here, the arrow indicates propagation from left to right or from right to left , Prediction for each moment , Both require feature vectors from both directions , Splicing (Concatenate) Then predict the results . Although the arrows are different , But the parameters are the same set . Some models also Two different sets of parameters can be used .f,g Is the activation function , [ h t → ; h t ← ] [\overrightarrow{h_t};\overleftarrow{h_t}] [ht;ht] Represents data splicing (Concatenate).
Bidirectional RNN At the same time “ In the past ” and “ future ” Information about . The above figure shows a sequence with a length of 4 Two way RNN structure .
Such as input x 1 x_1 x1 Transmit to the hidden layer along the solid arrow to get h 1 h_1 h1, Then it needs to be reused x t x_t xt To calculate the h t ′ h_t' ht′, utilize x 3 x_3 x3 and h t ′ h_t' ht′ To calculate the h 3 ′ h_3' h3′, utilize x 2 x_2 x2 and h 3 ′ h_3' h3′ To calculate the h 2 ′ h_2' h2′, utilize x 1 x_1 x1 and ’h_2’ To calculate the h 1 ′ h_1' h1′, Finally, put h 1 h_1 h1 and h 1 ′ h_1' h1′ Data stitching (Concatenate), Get the output y 1 y_1 y1. And so on , At the same time, the forward and reverse transfer data are used to predict the results .
two-way RNN It's like reading an article from the beginning to the end when we do reading comprehension , Then read the article again from the back , Then do the question . It is possible to have a new and different understanding when reading the article again from the back to the front , Finally, the model may get better results .
2、 Stacked two-way RNN
Stacked two-way RNN(Stacked Bidirectional RNN) Its structure is shown in the figure above . The picture above is a stack 3 A hidden layer RNN The Internet .
Be careful , The stacking here is bidirectional RNN There is not only two-way RNN Can be stacked , Actually arbitrary RNN Can be stacked , Such as SimpleRNN、LSTM and GRU These recurrent neural networks can also be stacked .
Stacking means in RNN Multiple layers are superimposed in the structure of , Be similar to BP Multiple layers can be superimposed in Neural Networks , Increase the nonlinearity of the network .
3、 two-way LSTM Realization MNIST Data set classification
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM,Dropout,Bidirectional
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
# Loading data sets
mnist = tf.keras.datasets.mnist
# Load data , The training set and test set have been divided when the data is loaded
# Training set data x_train The data shape of is (60000,28,28)
# Training set label y_train The data shape of is (60000)
# Test set data x_test The data shape of is (10000,28,28)
# Test set label y_test The data shape of is (10000)
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# Normalize the data of training set and test set , It helps to improve the training speed of the model
x_train, x_test = x_train / 255.0, x_test / 255.0
# Turn the labels of training set and test set into single hot code
y_train = tf.keras.utils.to_categorical(y_train,num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test,num_classes=10)
# data size - The line has 28 Pixel
input_size = 28
# Sequence length - Altogether 28 That's ok
time_steps = 28
# Hidden layer memory block Number
cell_size = 50
# Creating models
# The data input of the recurrent neural network must be 3 D data
# The data format is ( Number of data , Sequence length , data size )
# Loaded mnist The format of the data just meets the requirements
# Notice the input_shape There is no need to set the quantity of data when setting the model data input
model = Sequential([
Bidirectional(LSTM(units=cell_size,input_shape=(time_steps,input_size),return_sequences=True)),
Dropout(0.2),
Bidirectional(LSTM(cell_size)),
Dropout(0.2),
# 50 individual memory block Output 50 Value and output layer 10 Neurons are fully connected
Dense(10,activation=tf.keras.activations.softmax)
])
# The data input of the recurrent neural network must be 3 D data
# The data format is ( Number of data , Sequence length , data size )
# Loaded mnist The format of the data just meets the requirements
# Notice the input_shape There is no need to set the quantity of data when setting the model data input
# model.add(LSTM(
# units = cell_size,
# input_shape = (time_steps,input_size),
# ))
# 50 individual memory block Output 50 Value and output layer 10 Neurons are fully connected
# model.add(Dense(10,activation='softmax'))
# Define optimizer
adam = Adam(lr=1e-3)
# Define optimizer ,loss function, The accuracy of calculation during training Using the cross entropy loss function
model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['accuracy'])
# Training models
history=model.fit(x_train,y_train,batch_size=64,epochs=10,validation_data=(x_test,y_test))
# Print model summary
model.summary()
loss=history.history['loss']
val_loss=history.history['val_loss']
accuracy=history.history['accuracy']
val_accuracy=history.history['val_accuracy']
# draw loss curve
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
# draw acc curve
plt.plot(accuracy, label='Training accuracy')
plt.plot(val_accuracy, label='Validation accuracy')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
This may be easier to deal with text data , It's a little reluctant to use this model here , Just a simple test .
Model summary :
acc curve :
loss curve :
边栏推荐
猜你喜欢
关于 “原型” 的那些事你真的理解了吗?【上篇】
【JS】提取字符串中的分数,汇总后算出平均分,并与每个分数比较,输出
Go language learning notes - first acquaintance with go language
ModuleNotFoundError: No module named ‘scrapy‘ 终极解决方式
[dark horse morning post] Luo Yonghao responded to ridicule Oriental selection; Dong Qing's husband Mi Chunlei was executed for more than 700million; Geely officially acquired Meizu; Huawei releases M
双向RNN与堆叠的双向RNN
5g NR system architecture
关于vray 5.2的使用(自研笔记)
Do you really understand the things about "prototype"? [part I]
Broyage · fusion | savoir que le site officiel de chuangyu mobile end est en ligne et commencer le voyage de sécurité numérique!
随机推荐
iframe
小红书自研KV存储架构如何实现万亿量级存储与跨云多活
A usage example that can be compatible with various database transactions
沟通的艺术III:看人之间 之倾听
Implementation of wechat applet bottom loading and pull-down refresh
MFC宠物商店信息管理系统
[paper reading] ckan: collaborative knowledge aware autonomous network for adviser systems
Web3 Foundation grant program empowers developers to review four successful projects
Solution to the length of flex4 and Flex3 combox drop-down box
埋点111
微信核酸检测预约小程序系统毕业设计毕设(7)中期检查报告
uniapp
微信核酸检测预约小程序系统毕业设计毕设(6)开题答辩PPT
Broyage · fusion | savoir que le site officiel de chuangyu mobile end est en ligne et commencer le voyage de sécurité numérique!
C语言活期储蓄账户管理系统
Qt实现json解析
GO项目实战 — Gorm格式化时间字段
vite//
数组、、、
SqlServer定时备份数据库和定时杀死数据库死锁解决