当前位置:网站首页>Pytorch LSTM实现流程(可视化版本)
Pytorch LSTM实现流程(可视化版本)
2022-07-06 09:11:00 【一曲无痕奈何】
# 模型1:Pytorch LSTM实现流程
# 加载数据集
# 使得数据集可迭代(每次读取一个Batch)
# 创建模型类
# 初始化模型类
# 初始化损失类
# 训练模型
# 1. 加载数据集
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 2、下载数据集
trainsets = datasets.MNIST(root = './data2',train = True,download = True,transform = transforms.ToTensor())
testsets = datasets.MNIST(root = './data2',train = False,transform=transforms.ToTensor())
class_names = trainsets.classes #查看类别标签
print(class_names)
# 3、查看数据集大小shape
print(trainsets.data.shape)
print(trainsets.targets.shape)
#4、定义超参数
BASH_SIZE = 32 #每批读取的数据大小
EPOCHS = 10 #训练十轮
# 创建数据集的可迭代对象,也就是说一个batch一个batch的读取数据
train_loader = torch.utils.data.DataLoader(dataset = trainsets, batch_size = BASH_SIZE,shuffle = True)
test_loader = torch.utils.data.DataLoader(dataset = testsets, batch_size = BASH_SIZE,shuffle = True)
# 查看一批batch的数据
images, labels = next(iter(test_loader))
print(images.shape)
#6、定义函数,显示一批数据
def imshow(inp, title=None):
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406]) # 均值
std = np.array([0.229, 0.224, 0.225]) # 标准差
inp = std * inp + mean
inp = np.clip(inp, 0, 1) # 限速值限制在0-1之间
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
#网格显示
out = torchvision.utils.make_grid(images)
imshow(out)
# 7. 定义RNN模型
class LSTM_Model(nn.Module):
def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
super(LSTM_Model, self).__init__() # 初始化父类中的构造方法
self.hidden_dim = hidden_dim
self.layer_dim = layer_dim
#构建LSTM模型
self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first = True)
#全连接层:
self.fc = nn.Linear(hidden_dim,output_dim)
def forward(self, x):
#初始化隐藏层装态全为0
# (layer_dim, batch_size, hidden_dim)
h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)
# 初始化cell state
c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)
# 分离隐藏状态,以免梯度爆炸
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
# 只需要最后一层隐层的状态
out = self.fc(out[:, -1, :])
return out
# 8. 初始化模型
input_dim = 28 #输入维度
hidden_dim = 100 #隐藏的维度
layer_dim = 1 # 1 层
output_dim = 10 #输出维度
#实例化模型传入参数
model = LSTM_Model(input_dim, hidden_dim, layer_dim,output_dim)
#判断是否有GPU
device = torch.device('cuda:()' if torch.cuda.is_available() else 'cpu')
#9、定义损失函数
criterion = nn.CrossEntropyLoss()
#10、定义优化函数
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
#11、输出模型参数
length = len(list(model.parameters()))
#12、循环打印模型参数
for i in range(length):
print('参数: %d' % (i+1))
print(list(model.parameters())[i].size())
# 13 、模型训练
sequence_dim = 28 #序列长度
loss_list = [] #保存loss
accuracy_list = [] #保存accuracy
iteration_list = [] #保存循环次数
iter = 0
for epoch in range(EPOCHS):
for i, (images, labels) in enumerate(train_loader):
model.train() #声明训练
#一个batch的数据转换为LSTM的输入维度
images = images.view(-1, sequence_dim, input_dim).requires_grad_().to(device)
labels = labels.to(device)
#梯度清零(否则会不断增加)
optimizer.zero_grad()
#前向传播
outputs = model(images)
#计算损失
loss = criterion(outputs, labels)
#反向传播
loss.backward()
#更新参数
optimizer.step()
#计数自动加一
iter += 1
#模型验证
if iter % 500 == 0:
model.eval() #声明
#计算验证的accuracy
correct = 0.0
total = 0.0
#迭代测试集、获取数据、预测
for images, labels in test_loader:
images = images.view(-1, sequence_dim, input_dim).to(device)
#模型预测
outputs = model(images)
#获取预测概率的最大值的下标
predict = torch.max(outputs.data,1)[1]
#统计测试集的大小
total += labels.size(0)
# 统计判断/预测正确的数量
if torch.cuda.is_available():
correct += (predict.gpu() == labels.gpu()).sum()
else:
correct += (predict == labels).sum()
#计算 accuracy
accuracy = (correct / total)/ 100 * 100
#保存accuracy, loss iteration
loss_list.append(loss.data)
accuracy_list.append(accuracy)
iteration_list.append(iter)
# 打印信息
print("epoch : {}, Loss : {}, Accuracy : {}".format(iter, loss.item(), accuracy))
# 可视化 loss
plt.plot(iteration_list, loss_list)
plt.xlabel('Number of Iteration')
plt.ylabel('Loss')
plt.title('LSTM')
plt.show()
#可视化 accuracy
plt.plot(iteration_list, accuracy_list, color = 'r')
plt.xlabel('Number of Iteration')
plt.ylabel('Accuracy')
plt.title('LSTM')
plt.savefig('LSTM_accuracy.png')
plt.show()
边栏推荐
- 17 medical registration system_ [wechat Payment]
- MySQL实战优化高手05 生产经验:真实生产环境下的数据库机器配置如何规划?
- History of object recognition
- Contest3145 - the 37th game of 2021 freshman individual training match_ C: Tour guide
- Sichuan cloud education and double teacher model
- CAPL 脚本对.ini 配置文件的高阶操作
- Good blog good material record link
- A necessary soft skill for Software Test Engineers: structured thinking
- 再有人问你数据库缓存一致性的问题,直接把这篇文章发给他
- The appearance is popular. Two JSON visualization tools are recommended for use with swagger. It's really fragrant
猜你喜欢
Implement sending post request with form data parameter
Jar runs with error no main manifest attribute
AI的路线和资源
Solve the problem of remote connection to MySQL under Linux in Windows
The underlying logical architecture of MySQL
What should the redis cluster solution do? What are the plans?
使用OVF Tool工具从Esxi 6.7中导出虚拟机
C杂讲 浅拷贝 与 深拷贝
MySQL底层的逻辑架构
Control the operation of the test module through the panel in canoe (primary)
随机推荐
jar运行报错no main manifest attribute
MySQL实战优化高手03 用一次数据更新流程,初步了解InnoDB存储引擎的架构设计
C miscellaneous lecture continued
MySQL combat optimization expert 07 production experience: how to conduct 360 degree dead angle pressure test on the database in the production environment?
PR 2021 quick start tutorial, first understanding the Premiere Pro working interface
16 medical registration system_ [order by appointment]
MySQL combat optimization expert 05 production experience: how to plan the database machine configuration in the real production environment?
Some thoughts on the study of 51 single chip microcomputer
Bugku web guide
Super detailed steps to implement Wechat public number H5 Message push
[NLP] bert4vec: a sentence vector generation tool based on pre training
How to make shell script executable
Docker MySQL solves time zone problems
Const decorated member function problem
Competition vscode Configuration Guide
Upload vulnerability
oracle sys_ Context() function
Contest3145 - the 37th game of 2021 freshman individual training match_ B: Password
Vscode common instructions
MySQL Real Time Optimization Master 04 discute de ce qu'est binlog en mettant à jour le processus d'exécution des déclarations dans le moteur de stockage InnoDB.