当前位置:网站首页>NodeJs爬虫抓取古代典籍,共计16000个页面心得体会总结及项目分享
NodeJs爬虫抓取古代典籍,共计16000个页面心得体会总结及项目分享
2020-11-06 01:17:00 【:::::::】
前言
之前研究数据,零零散散的写过一些数据抓取的爬虫,不过写的比较随意。有很多地方现在看起来并不是很合理 这段时间比较闲,本来是想给之前的项目做重构的。 后来 利用这个周末,索性重新写了一个项目,就是本项目 guwen-spider。目前这个爬虫还是比较简单的类型的, 直接抓取页面,然后在页面中提取数据,保存数据到数据库。 通过与之前写的对比,我觉得难点在于整个程序的健壮性,以及相应的容错机制。在昨天写代码的过程中其实也有反映, 真正的主体代码其实很快就写完了 ,花了大部分时间是在 做稳定性的调试, 以及寻求一种更合理的方式来处理数据与流程控制的关系。
背景
项目的背景是抓取一个一级页面是目录列表 ,点击一个目录进去 是一个章节 及篇幅列表 ,点击章节或篇幅进入具体的内容页面。
概述
本项目github地址 : guwen-spider (PS:最后面还有彩蛋 ~~逃
项目技术细节 项目大量用到了 ES7 的async 函数, 更直观的反应程序了的流程。为了方便,在对数据遍历的过程中直接使用了著名的async这个库,所以不可避免的还是用到了回调promise ,因为数据的处理发生在回调函数中,不可避免的会遇到一些数据传递的问题,其实也可以直接用ES7的async await 写一个方法来实现相同的功能。这里其实最赞的一个地方是使用了 Class 的 static 方法封装对数据库的操作, static 顾名思义 静态方法 就跟 prototype 一样 ,不会占用额外空间。 项目主要用到了
- 1 ES7的 async await 协程做异步有关的逻辑处理。
- 2 使用 npm的 async库 来做循环遍历,以及并发请求操作。
- 3 使用 log4js 来做日志处理
- 4 使用 cheerio 来处理dom的操作。
- 5 使用 mongoose 来连接mongoDB 做数据的保存以及操作。
目录结构
<pre> ├── bin // 入口 │ ├── booklist.js // 抓取书籍逻辑 │ ├── chapterlist.js // 抓取章节逻辑 │ ├── content.js // 抓取内容逻辑 │ └── index.js // 程序入口 ├── config // 配置文件 ├── dbhelper // 数据库操作方法目录 ├── logs // 项目日志目录 ├── model // mongoDB 集合操作实例 ├── node_modules ├── utils // 工具函数 ├── package.json </pre>
项目实现方案分析
项目是一个典型的多级抓取案例,目前只有三级,即 书籍列表, 书籍项对应的 章节列表,一个章节链接对应的内容。 抓取这样的结构可以采用两种方式, 一是 直接从外层到内层 内层抓取完以后再执行下一个外层的抓取, 还有一种就是先把外层抓取完成保存到数据库,然后根据外层抓取到所有内层章节的链接,再次保存,然后从数据库查询到对应的链接单元 对之进行内容抓取。这两种方案各有利弊,其实两种方式我都试过, 后者有一个好处,因为对三个层级是分开抓取的, 这样就能够更方便,尽可能多的保存到对应章节的相关数据。 可以试想一下 ,如果采用前者 按照正常的逻辑 对一级目录进行遍历抓取到对应的二级章节目录, 再对章节列表进行遍历 抓取内容,到第三级 内容单元抓取完成 需要保存时,如果需要很多的一级目录信息,就需要 这些分层的数据之间进行数据传递 ,想想其实应该是比较复杂的一件事情。所以分开保存数据 一定程度上避开了不必要的复杂的数据传递。
目前我们考虑到 其实我们要抓取到的古文书籍数量并不多,古文书籍大概只有180本囊括了各种经史。其和章节内容本身是一个很小的数据 ,即一个集合里面有180个文档记录。 这180本书所有章节抓取下来一共有一万六千个章节,对应需要访问一万六千个页面爬取到对应的内容。所以选择第二种应该是合理的。
项目实现
主程有三个方法 bookListInit ,chapterListInit,contentListInit, 分别是抓取书籍目录,章节列表,书籍内容的方法对外公开暴露的初始化方法。通过async 可以实现对这三个方法的运行流程进行控制,书籍目录抓取完成将数据保存到数据库,然后执行结果返回到主程序,如果运行成功 主程序则执行根据书籍列表对章节列表的抓取,同理对书籍内容进行抓取。
项目主入口
/** * 爬虫抓取主入口 */ const start = async() => { let booklistRes = await bookListInit(); if (!booklistRes) { logger.warn('书籍列表抓取出错,程序终止...'); return; } logger.info('书籍列表抓取成功,现在进行书籍章节抓取...'); let chapterlistRes = await chapterListInit(); if (!chapterlistRes) { logger.warn('书籍章节列表抓取出错,程序终止...'); return; } logger.info('书籍章节列表抓取成功,现在进行书籍内容抓取...'); let contentListRes = await contentListInit(); if (!contentListRes) { logger.warn('书籍章节内容抓取出错,程序终止...'); return; } logger.info('书籍内容抓取成功'); } // 开始入口 if (typeof bookListInit === 'function' && typeof chapterListInit === 'function') { // 开始抓取 start(); }
引入的 bookListInit ,chapterListInit,contentListInit, 三个方法
booklist.js
/** * 初始化方法 返回抓取结果 true 抓取成果 false 抓取失败 */ const bookListInit = async() => { logger.info('抓取书籍列表开始...'); const pageUrlList = getPageUrlList(totalListPage, baseUrl); let res = await getBookList(pageUrlList); return res; }
chapterlist.js
/** * 初始化入口 */ const chapterListInit = async() => { const list = await bookHelper.getBookList(bookListModel); if (!list) { logger.error('初始化查询书籍目录失败'); } logger.info('开始抓取书籍章节列表,书籍目录共:' + list.length + '条'); let res = await asyncGetChapter(list); return res; };
content.js
/** * 初始化入口 */ const contentListInit = async() => { //获取书籍列表 const list = await bookHelper.getBookLi(bookListModel); if (!list) { logger.error('初始化查询书籍目录失败'); return; } const res = await mapBookList(list); if (!res) { logger.error('抓取章节信息,调用 getCurBookSectionList() 进行串行遍历操作,执行完成回调出错,错误信息已打印,请查看日志!'); return; } return res; }
内容抓取的思考
书籍目录抓取其实逻辑非常简单,只需要使用async.mapLimit做一个遍历就可以保存数据了,但是我们在保存内容的时候 简化的逻辑其实就是 遍历章节列表 抓取链接里的内容。但是实际的情况是链接数量多达几万 我们从内存占用角度也不能全部保存到一个数组中,然后对其遍历,所以我们需要对内容抓取进行单元化。 普遍的遍历方式 是每次查询一定的数量,来做抓取,这样缺点是只是以一定数量做分类,数据之间没有关联,以批量方式进行插入,如果出错 则容错会有一些小问题,而且我们想一本书作为一个集合单独保存会遇到问题。因此我们采用第二种就是以一个书籍单元进行内容抓取和保存。 这里使用了 async.mapLimit(list, 1, (series, callback) => {})
这个方法来进行遍历,不可避免的用到了回调,感觉很恶心。async.mapLimit()的第二个参数可以设置同时请求数量。
/* * 内容抓取步骤: * 第一步得到书籍列表, 通过书籍列表查到一条书籍记录下 对应的所有章节列表, * 第二步 对章节列表进行遍历获取内容保存到数据库中 * 第三步 保存完数据后 回到第一步 进行下一步书籍的内容抓取和保存 */ /** * 初始化入口 */ const contentListInit = async() => { //获取书籍列表 const list = await bookHelper.getBookList(bookListModel); if (!list) { logger.error('初始化查询书籍目录失败'); return; } const res = await mapBookList(list); if (!res) { logger.error('抓取章节信息,调用 getCurBookSectionList() 进行串行遍历操作,执行完成回调出错,错误信息已打印,请查看日志!'); return; } return res; } /** * 遍历书籍目录下的章节列表 * @param {*} list */ const mapBookList = (list) => { return new Promise((resolve, reject) => { async.mapLimit(list, 1, (series, callback) => { let doc = series._doc; getCurBookSectionList(doc, callback); }, (err, result) => { if (err) { logger.error('书籍目录抓取异步执行出错!'); logger.error(err); reject(false); return; } resolve(true); }) }) } /** * 获取单本书籍下章节列表 调用章节列表遍历进行抓取内容 * @param {*} series * @param {*} callback */ const getCurBookSectionList = async(series, callback) => { let num = Math.random() * 1000 + 1000; await sleep(num); let key = series.key; const res = await bookHelper.querySectionList(chapterListModel, { key: key }); if (!res) { logger.error('获取当前书籍: ' + series.bookName + ' 章节内容失败,进入下一部书籍内容抓取!'); callback(null, null); return; } //判断当前数据是否已经存在 const bookItemModel = getModel(key); const contentLength = await bookHelper.getCollectionLength(bookItemModel, {}); if (contentLength === res.length) { logger.info('当前书籍:' + series.bookName + '数据库已经抓取完成,进入下一条数据任务'); callback(null, null); return; } await mapSectionList(res); callback(null, null); }
数据抓取完了 怎么保存是个问题
这里我们通过key 来给数据做分类,每次按照key来获取链接,进行遍历,这样的好处是保存的数据是一个整体,现在思考数据保存的问题
- 1 可以以整体的方式进行插入 优点 : 速度快 数据库操作不浪费时间。 缺点 : 有的书籍可能有几百个章节 也就意味着要先保存几百个页面的内容再进行插入,这样做同样很消耗内存,有可能造成程序运行不稳定。
- 2可以以每一篇文章的形式插入数据库。优点 : 页面抓取即保存的方式 使得数据能够及时保存,即使后续出错也不需要重新保存前面的章节, 缺点 : 也很明显 就是慢 ,仔细想想如果要爬几万个页面 做 几万次*N 数据库的操作 这里还可以做一个缓存器一次性保存一定条数 当条数达到再做保存这样也是一个不错的选择。
/** * 遍历单条书籍下所有章节 调用内容抓取方法 * @param {*} list */ const mapSectionList = (list) => { return new Promise((resolve, reject) => { async.mapLimit(list, 1, (series, callback) => { let doc = series._doc; getContent(doc, callback) }, (err, result) => { if (err) { logger.error('书籍目录抓取异步执行出错!'); logger.error(err); reject(false); return; } const bookName = list[0].bookName; const key = list[0].key; // 以整体为单元进行保存 saveAllContentToDB(result, bookName, key, resolve); //以每篇文章作为单元进行保存 // logger.info(bookName + '数据抓取完成,进入下一部书籍抓取函数...'); // resolve(true); }) }) }
两者各有利弊,这里我们都做了尝试。 准备了两个错误保存的集合,errContentModel, errorCollectionModel,在插入出错时 分别保存信息到对应的集合中,二者任选其一即可。增加集合来保存数据的原因是 便于一次性查看以及后续操作, 不用看日志。
(PS ,其实完全用 errorCollectionModel 这个集合就可以了 ,errContentModel这个集合可以完整保存章节信息)
//保存出错的数据名称 const errorSpider = mongoose.Schema({ chapter: String, section: String, url: String, key: String, bookName: String, author: String, }) // 保存出错的数据名称 只保留key 和 bookName信息 const errorCollection = mongoose.Schema({ key: String, bookName: String, })
我们将每一条书籍信息的内容 放到一个新的集合中,集合以key来进行命名。
总结
写这个项目 其实主要的难点在于程序稳定性的控制,容错机制的设置,以及错误的记录,目前这个项目基本能够实现直接运行 一次性跑通整个流程。 但是程序设计也肯定还存在许多问题 ,欢迎指正和交流。
彩蛋
写完这个项目 做了一个基于React开的前端网站用于页面浏览 和一个基于koa2.x开发的服务端, 整体技术栈相当于是 React + Redux + Koa2 ,前后端服务是分开部署的,各自独立可以更好的去除前后端服务的耦合性,比如同一套服务端代码,不仅可以给web端 还可以给 移动端 ,app 提供支持。目前整个一套还很简陋,但是可以满足基本的查询浏览功能。希望后期有时间可以把项目变得更加丰富。
- 本项目地址 地址 : guwen-spider
- 对应前端 React + Redux + semantic-ui 地址 : guwen-react
- 对应Node端 Koa2.2 + mongoose 地址 : guwen-node
项目挺简单的 ,但是多了一个学习和研究 从前端到服务端的开发的环境。
以上です
本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。
版权声明
本文为[:::::::]所创,转载请带上原文链接,感谢
https://cloud.tencent.com/developer/article/1715176
边栏推荐
猜你喜欢
随机推荐
被老程式設計師壓榨怎麼辦?我不想辭職
如何成为数据科学家? - kdnuggets
Elasticsearch database | elasticsearch-7.5.0 application construction
Flink on paasta: yelp's new stream processing platform running on kubernetes
Probabilistic linear regression with uncertain weights
自然语言处理之命名实体识别-tanfordcorenlp-NER(一)
接口压力测试:Siege压测安装、使用和说明
DeepWalk模型的简介与优缺点
8.1.1 handling global exceptions through handlerexceptionresolver
GBDT与xgb区别,以及梯度下降法和牛顿法的数学推导
如何使用ES6中的参数
阻塞队列之LinkedBlockingQueue分析
6.9.1 flashmapmanager initialization (flashmapmanager redirection Management) - SSM in depth analysis and project practice
nlp模型-bert从入门到精通(一)
TensorFlow2.0 问世,Pytorch还能否撼动老大哥地位?
有关PDF417条码码制的结构介绍
写一个通用的幂等组件,我觉得很有必要
TF flags的简介
我们编写 React 组件的最佳实践
前端模組化簡單總結