当前位置:网站首页>用pulp库解决运输问题【详细】

用pulp库解决运输问题【详细】

2022-08-03 05:11:00 北北的巷栀酒

这是一个非常经典的运输问题:

 我发现网上有许多关于这个问题的代码,但是都没有注释或解说,所以我在代码中加上了注释,以便于更好的理解,有不懂的欢迎留言,或者看看我的另一篇文章https://blog.csdn.net/m0_59309242/article/details/119352731,或许就能找到答案

import pulp
import numpy as np
from pprint import pprint        #导入库函数

def transportation_problem(costs, x_max, y_max):

    row = len(costs)    #规定行数
    col = len(costs[0])   #规定列数

    prob = pulp.LpProblem(sense=pulp.LpMaximize)

    var = [[pulp.LpVariable(f'x{i}{j}', lowBound=0, cat='Integer') for j in range(col)] for i in range(row)]  #规定变量,此处的f''是为了将x,y传给i,j

    flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]   #匿名函数,总而言之是为了变成一维数组

    prob += pulp.lpDot(flatten(var), costs.flatten())      #做点积

    for i in range(row):        
        prob += (pulp.lpSum(var[i]) <= x_max[i])           #lp计算序列的和,用lpsum比普通的sum快很多;此处属于添加条件使各作物小于计划播种面积

    for j in range(col):
        prob += (pulp.lpSum([var[i][j] for i in range(row)]) <= y_max[j])

    prob.solve()

    return {'objective':pulp.value(prob.objective), 'var': [[pulp.value(var[i][j]) for j in range(col)] for i in range(row)]}
if __name__ == '__main__':
    costs = np.array([[500, 550, 630, 1000, 800, 700],
                       [800, 700, 600, 950, 900, 930],
                       [1000, 960, 840, 650, 600, 700],
                       [1200, 1040, 980, 860, 880, 780]])

    max_plant = [76, 88, 96, 40]
    max_cultivation = [42, 56, 44, 39, 60, 59]
    res = transportation_problem(costs, max_plant, max_cultivation)        #调用函数

    print(f'最大值为{res["objective"]}')
    print('各变量的取值为:')
    pprint(res['var'])

 代码中flatten的用法在这儿https://blog.csdn.net/m0_59309242/article/details/119464565

得到的结果是:

原网站

版权声明
本文为[北北的巷栀酒]所创,转载请带上原文链接,感谢
https://blog.csdn.net/m0_59309242/article/details/119394845