当前位置:网站首页>Image quality evaluation including Matlab source code

Image quality evaluation including Matlab source code

2022-06-11 09:41:00 Matlab Research Assistant

1 brief introduction

Image quality evaluation including Matlab Source code

2 Part of the code

      
      
function varargout = IQA(varargin)
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @IQA_OpeningFcn, ...
'gui_OutputFcn', @IQA_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before IQA is made visible.
function IQA_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
ResetButton_Callback(hObject, eventdata, handles)
% --- Outputs from this function are returned to the command line.
function varargout = IQA_OutputFcn(hObject, eventdata, handles)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in BrowseImage.
function BrowseImage_Callback(hObject, eventdata, handles)
ResetButton_Callback(hObject, eventdata, handles);
global image;
[filename pathname] = uigetfile({'*.jpg';'*.bmp';'*.tif';'*.png'},'File Selector');
x = strcat(pathname, filename);
image=imread(x);
axes(handles.axes1);
imshow(image);
% --- Executes on button press in AddNoise.
function AddNoise_Callback(hObject, eventdata, handles)
global image;
global addnoisyimage;
global mean;
global variance;
global AdditiveNoiseMenu;
if (strcmp(AdditiveNoiseMenu, 'Gaussian'))
addnoisyimage = imnoise(image, 'Gaussian', mean, variance);
elseif (strcmp(AdditiveNoiseMenu, 'Poisson'))
addnoisyimage = imnoise(image, 'Poisson');
elseif (strcmp(AdditiveNoiseMenu, 'Select Additive Noise Type'))
addnoisyimage = image;
end
axes(handles.axes2);
imshow(addnoisyimage);
% --- Executes on button press in MultiNoise.
function MultiNoise_Callback(hObject, eventdata, handles)
global noisedensity;
global variance_multi;
global image;
global multinoisyimage;
global MultiplicativeNoiseMenu;
if (strcmp(MultiplicativeNoiseMenu, 'Salt & Pepper'))
multinoisyimage = imnoise(image, 'salt & pepper', noisedensity);
elseif (strcmp(MultiplicativeNoiseMenu, 'Speckle'))
multinoisyimage = imnoise(image, 'speckle', variance_multi);
elseif (strcmp(MultiplicativeNoiseMenu, 'Select Multiplicative Noise'))
multinoisyimage = image;
end
axes(handles.axes3);
imshow(multinoisyimage);
% --- Executes on button press in CheckPSNR.
function CheckPSNR_Callback(hObject, eventdata, handles)
global addnoisyimage;
global multinoisyimage;
global image;
global s;
global u;
global justforcontrol;
if (get(hObject, 'Value') == get(hObject,'Max'))
justforcontrol=1;
s=psnr(addnoisyimage, image);
u=psnr(multinoisyimage, image);
else
justforcontrol=0;
s='--';
u='--';
end
% Hint: get(hObject,'Value') returns toggle state of CheckPSNR
function s = psnr(addnoisyimage, image)
if(ndims(addnoisyimage)==3)
addnoisyimage = rgb2gray(addnoisyimage);
end
if(ndims(image)==3)
image = rgb2gray(image);
end
addnoisyimage=double(addnoisyimage);
image=double(image);
[m,n] = size(addnoisyimage);
peak=255*255*m*n;
noise = addnoisyimage - image;
nostotal = sum(sum(noise.*noise));
if nostotal == 0
s = 'INF'; %% INF. clean image
else
s = 10 * log10(peak./nostotal);
end
% --- Executes on button press in CheckSSIM.
function CheckSSIM_Callback(hObject, eventdata, handles)
global addnoisyimage;
global multinoisyimage;
global image;
global t;
global v;
global justforcontrol2;
K = [0.05 0.05];
window = ones(8);
L = 100;
Z = [0.01 0.03];
if (get(hObject, 'Value') == get(hObject,'Max'))
justforcontrol2=1;
t=ssim(addnoisyimage, image, Z, window, L);
v=ssim(multinoisyimage, image, Z, window, L);
else
justforcontrol2=0;
t='--';
v='--';
end
% Hint: get(hObject,'Value') returns toggle state of CheckSSIM
function [mssim] = ssim(img1, img2, Z, window, L)
if(ndims(img1)==3)
img1=rgb2gray(img1);
end
if(ndims(img2)==3)
img2=rgb2gray(img2);
end
[rows,cols]=size(img2);
img1=imresize(img1,[rows cols]);
if (nargin < 2 || nargin > 5)
mssim = -Inf;
ssim_map = -Inf;
return;
end
if (size(img1) ~= size(img2))
mssim = -Inf;
ssim_map = -Inf;
return;
end
[M N] = size(img1);
if (nargin == 2)
if ((M < 11) || (N < 11))
mssim = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5); %
Z(1) = 0.01; % default settings
Z(2) = 0.03;
L = 255;
end
if (nargin == 3)
if ((M < 11) || (N < 11))
mssim = -Inf;
ssim_map = -Inf;
return
end
window = fspecial('gaussian', 11, 1.5);
L = 255;
if (length(Z) == 2)
if (Z(1) < 0 || Z(2) < 0)
mssim = -Inf;
ssim_map = -Inf;
return;
end
else
mssim = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 4)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
mssim = -Inf;
ssim_map = -Inf;
return
end
L = 255;
if (length(Z) == 2)
if (Z(1) < 0 || Z(2) < 0)
mssim = -Inf;
ssim_map = -Inf;
return;
end
else
mssim = -Inf;
ssim_map = -Inf;
return;
end
end
if (nargin == 5)
[H W] = size(window);
if ((H*W) < 4 || (H > M) || (W > N))
mssim = -Inf;
ssim_map = -Inf;
return
end
if (length(Z) == 2)
if (Z(1) < 0 || Z(2) < 0)
mssim = -Inf;
ssim_map = -Inf;
return;
end
else
mssim = -Inf;
ssim_map = -Inf;
return;
end
end
img1 = double(img1);
img2 = double(img2);
% automatic downsampling
f = max(1,round(min(M,N)/256));
%downsampling by f
%use a simple low-pass filter
if(f>1)
lpf = ones(f,f);
lpf = lpf/sum(lpf(:));
img1 = imfilter(img1,lpf,'symmetric','same');
img2 = imfilter(img2,lpf,'symmetric','same');
img1 = img1(1:f:end,1:f:end);
img2 = img2(1:f:end,1:f:end);
end
C1 = (Z(1)*L)^2;
C2 = (Z(2)*L)^2;
window = window/sum(sum(window));
mu1 = filter2(window, img1, 'valid');
mu2 = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;
if (C1 > 0 && C2 > 0)
ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
numerator1 = 2*mu1_mu2 + C1;
numerator2 = 2*sigma12 + C2;
denominator1 = mu1_sq + mu2_sq + C1;
denominator2 = sigma1_sq + sigma2_sq + C2;
ssim_map = ones(size(mu1));
index = (denominator1.*denominator2 > 0);
ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
index = (denominator1 ~= 0) & (denominator2 == 0);
ssim_map(index) = numerator1(index)./denominator1(index);
end
mssim = mean2(ssim_map);
function edit1_Callback(hObject, eventdata, handles)
% Hints: get(hObject,'String') returns contents of edit1 as text
% str2double(get(hObject,'String')) returns contents of edit1 as a double
% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in AddNoiseResults.
function AddNoiseResults_Callback(hObject, eventdata, handles)
global u;
global v;
global s;
global t;
global justforcontrol;
global justforcontrol2;
if justforcontrol==1;
CheckPSNR_Callback(hObject, eventdata, handles)
end
if justforcontrol2==1;
CheckSSIM_Callback(hObject, eventdata, handles)
end
set(handles.PSNR_Add, 'string', s);
set(handles.SSIM_Add, 'string', t);
set(handles.PSNR_Multi, 'string', u);
set(handles.SSIM_Multi, 'string', v);
% --- Executes on button press in ResetButton.
function ResetButton_Callback(hObject, eventdata, handles)
global s;
global t
global u;
global v;
global q;
global justforcontrol;
global justforcontrol2;
global addnoisyimage;
global multinoisyimage;
global image;
global mean;
global variance;
global noisedensity;
global variance_multi;
global AdditiveNoiseMenu;
global MultiplicativeNoiseMenu;
t='--';
s='--';
u='--';
v='--';
q=0;
justforcontrol=0;
justforcontrol2=0;
image = ones(600,400);
addnoisyimage = image;
multinoisyimage = image;
axes(handles.axes1);
imshow(image);
axes(handles.axes2);
imshow(addnoisyimage);
axes(handles.axes3);
imshow(multinoisyimage);
set(handles.CheckPSNR, 'Value', q);
set(handles.CheckSSIM, 'Value', q);
set(handles.PSNR_Add, 'string', s);
set(handles.SSIM_Add, 'string', t);
set(handles.PSNR_Multi, 'string', u);
set(handles.SSIM_Multi, 'string', v);
set(handles.MeanValue, 'string', mean);
set(handles.VarianceValue, 'string', variance);
set(handles.NoiseDensityValue, 'string', noisedensity);
set(handles.VarianceValue_Multi, 'string', variance_multi);
if (strcmp(AdditiveNoiseMenu, 'Poisson'))
mean = 'N/A';
variance = 'N/A';
set(handles.MeanValue, 'string', mean);
set(handles.VarianceValue, 'string', variance);
elseif (strcmp(AdditiveNoiseMenu, 'Gaussian'))
mean=0;
variance=0.01;
set(handles.MeanValue, 'string', mean);
set(handles.VarianceValue, 'string', variance);
elseif (strcmp(AdditiveNoiseMenu, 'Select Additive Noise Type'))
mean=0;
variance=0;
set(handles.MeanValue, 'string', mean);
set(handles.VarianceValue, 'string', variance);
end
if (strcmp(MultiplicativeNoiseMenu, 'Speckle'))
noisedensity = 'N/A';
variance_multi = 0.04;
set(handles.NoiseDensityValue, 'string', noisedensity);
set(handles.VarianceValue_Multi, 'string', variance_multi);
elseif (strcmp(MultiplicativeNoiseMenu, 'Salt & Pepper'))
noisedensity = 0.05;
variance_multi = 'N/A';
set(handles.NoiseDensityValue, 'string', noisedensity);
set(handles.VarianceValue_Multi, 'string', variance_multi);
elseif (strcmp(MultiplicativeNoiseMenu, 'Select Multiplicative Noise'))
noisedensity = 0;
variance_multi = 0;
set(handles.NoiseDensityValue, 'string', noisedensity);
set(handles.VarianceValue_Multi, 'string', variance_multi);
end
% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over PSNR_Add.
function PSNR_Add_ButtonDownFcn(hObject, eventdata, handles)
function MeanValue_Callback(hObject, eventdata, handles)
% Hints: get(hObject,'String') returns contents of MeanValue as text
% str2double(get(hObject,'String')) returns contents of MeanValue as a double
global mean;
mean = str2double(get(handles.MeanValue,'string'));
% --- Executes during object creation, after setting all properties.
function MeanValue_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function VarianceValue_Callback(hObject, eventdata, handles)
% Hints: get(hObject,'String') returns contents of VarianceValue as text
% str2double(get(hObject,'String')) returns contents of VarianceValue as a double
global variance;
variance = str2double(get(handles.VarianceValue,'string'));
% --- Executes during object creation, after setting all properties.
function VarianceValue_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function NoiseDensityValue_Callback(hObject, eventdata, handles)
% Hints: get(hObject,'String') returns contents of NoiseDensityValue as text
% str2double(get(hObject,'String')) returns contents of NoiseDensityValue as a double
global noisedensity;
noisedensity = str2double(get(handles.NoiseDensityValue,'string'));
% --- Executes during object creation, after setting all properties.
function NoiseDensityValue_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in AdditiveNoiseMenu.
function AdditiveNoiseMenu_Callback(hObject, eventdata, handles)
% Hints: contents = cellstr(get(hObject,'String')) returns AdditiveNoiseMenu contents as cell array
% contents{get(hObject,'Value')} returns selected item from AdditiveNoiseMenu
global AdditiveNoiseMenu;
global mean;
global variance;
contents = cellstr(get(hObject,'String'));
AdditiveNoiseMenu = contents{get(hObject,'Value')};
if (strcmp(AdditiveNoiseMenu, 'Poisson'))
mean = 'N/A';
variance = 'N/A';
set(handles.MeanValue, 'string', mean);
set(handles.VarianceValue, 'string', variance);
elseif (strcmp(AdditiveNoiseMenu, 'Gaussian'))
mean=0;
variance=0.01;
set(handles.MeanValue, 'string', mean);
set(handles.VarianceValue, 'string', variance);
end
% --- Executes during object creation, after setting all properties.
function AdditiveNoiseMenu_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in MultiplicativeNoiseMenu.
function MultiplicativeNoiseMenu_Callback(hObject, eventdata, handles)
% Hints: contents = cellstr(get(hObject,'String')) returns MultiplicativeNoiseMenu contents as cell array
% contents{get(hObject,'Value')} returns selected item from MultiplicativeNoiseMenu
global MultiplicativeNoiseMenu;
global noisedensity;
global variance_multi;
contents = cellstr(get(hObject,'String'));
MultiplicativeNoiseMenu = contents{get(hObject,'Value')};
if (strcmp(MultiplicativeNoiseMenu, 'Speckle'))
noisedensity = 'N/A';
variance_multi = 0.04;
set(handles.NoiseDensityValue, 'string', noisedensity);
set(handles.VarianceValue_Multi, 'string', variance_multi);
elseif (strcmp(MultiplicativeNoiseMenu, 'Salt & Pepper'))
noisedensity = 0.05;
variance_multi = 'N/A';
set(handles.NoiseDensityValue, 'string', noisedensity);
set(handles.VarianceValue_Multi, 'string', variance_multi);
end
% --- Executes during object creation, after setting all properties.
function MultiplicativeNoiseMenu_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function VarianceValue_Multi_Callback(hObject, eventdata, handles)
% Hints: get(hObject,'String') returns contents of VarianceValue_Multi as text
% str2double(get(hObject,'String')) returns contents of VarianceValue_Multi as a double
global variance_multi;
variance_multi = str2double(get(handles.VarianceValue_Multi,'string'));
% --- Executes during object creation, after setting all properties.
function VarianceValue_Multi_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --------------------------------------------------------------------
function Untitled_1_Callback(hObject, eventdata, handles)
% hObject handle to Untitled_1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --------------------------------------------------------------------
function Untitled_2_Callback(hObject, eventdata, handles)
% hObject handle to Untitled_2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 183.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190.
  • 191.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203.
  • 204.
  • 205.
  • 206.
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221.
  • 222.
  • 223.
  • 224.
  • 225.
  • 226.
  • 227.
  • 228.
  • 229.
  • 230.
  • 231.
  • 232.
  • 233.
  • 234.
  • 235.
  • 236.
  • 237.
  • 238.
  • 239.
  • 240.
  • 241.
  • 242.
  • 243.
  • 244.
  • 245.
  • 246.
  • 247.
  • 248.
  • 249.
  • 250.
  • 251.
  • 252.
  • 253.
  • 254.
  • 255.
  • 256.
  • 257.
  • 258.
  • 259.
  • 260.
  • 261.
  • 262.
  • 263.
  • 264.
  • 265.
  • 266.
  • 267.
  • 268.
  • 269.
  • 270.
  • 271.
  • 272.
  • 273.
  • 274.
  • 275.
  • 276.
  • 277.
  • 278.
  • 279.
  • 280.
  • 281.
  • 282.
  • 283.
  • 284.
  • 285.
  • 286.
  • 287.
  • 288.
  • 289.
  • 290.
  • 291.
  • 292.
  • 293.
  • 294.
  • 295.
  • 296.
  • 297.
  • 298.
  • 299.
  • 300.
  • 301.
  • 302.
  • 303.
  • 304.
  • 305.
  • 306.
  • 307.
  • 308.
  • 309.
  • 310.
  • 311.
  • 312.
  • 313.
  • 314.
  • 315.
  • 316.
  • 317.
  • 318.
  • 319.
  • 320.
  • 321.
  • 322.
  • 323.
  • 324.
  • 325.
  • 326.
  • 327.
  • 328.
  • 329.
  • 330.
  • 331.
  • 332.
  • 333.
  • 334.
  • 335.
  • 336.
  • 337.
  • 338.
  • 339.
  • 340.
  • 341.
  • 342.
  • 343.
  • 344.
  • 345.
  • 346.
  • 347.
  • 348.
  • 349.
  • 350.
  • 351.
  • 352.
  • 353.
  • 354.
  • 355.
  • 356.
  • 357.
  • 358.
  • 359.
  • 360.
  • 361.
  • 362.
  • 363.
  • 364.
  • 365.
  • 366.
  • 367.
  • 368.
  • 369.
  • 370.
  • 371.
  • 372.
  • 373.
  • 374.
  • 375.
  • 376.
  • 377.
  • 378.
  • 379.
  • 380.
  • 381.
  • 382.
  • 383.
  • 384.
  • 385.
  • 386.
  • 387.
  • 388.
  • 389.
  • 390.
  • 391.
  • 392.
  • 393.
  • 394.
  • 395.
  • 396.
  • 397.
  • 398.
  • 399.
  • 400.
  • 401.
  • 402.
  • 403.
  • 404.
  • 405.
  • 406.
  • 407.
  • 408.
  • 409.
  • 410.
  • 411.
  • 412.
  • 413.
  • 414.
  • 415.
  • 416.
  • 417.
  • 418.
  • 419.
  • 420.
  • 421.
  • 422.
  • 423.
  • 424.
  • 425.
  • 426.
  • 427.
  • 428.
  • 429.
  • 430.
  • 431.
  • 432.
  • 433.
  • 434.
  • 435.
  • 436.
  • 437.
  • 438.
  • 439.
  • 440.
  • 441.
  • 442.
  • 443.
  • 444.
  • 445.
  • 446.
  • 447.
  • 448.
  • 449.
  • 450.
  • 451.
  • 452.
  • 453.
  • 454.
  • 455.
  • 456.
  • 457.
  • 458.
  • 459.
  • 460.
  • 461.

3 Simulation results

 Image quality evaluation including Matlab Source code _ico

4 reference

[1]Wang, Z., & Bovik, A. C. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE signal processing magazine26(1), 98-117.

[2]Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing13(4), 600-612.

About bloggers : Good at intelligent optimization algorithms 、 Neural networks predict 、 signal processing 、 Cellular automata 、 The image processing 、 Path planning 、 UAV and other fields Matlab Simulation , relevant matlab Code problems can be exchanged by private letter .

Some theories cite network literature , If there is infringement, contact the blogger to delete .

 Image quality evaluation including Matlab Source code _sed_02


原网站

版权声明
本文为[Matlab Research Assistant]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/03/202203012230093585.html