当前位置:网站首页>Marathon envs project environment configuration (strengthen learning and imitate reference actions)
Marathon envs project environment configuration (strengthen learning and imitate reference actions)
2022-07-06 08:38:00 【daoboker】
Run this project (Unity engine ) The main reason is that we can imitate reference actions in different physical engines . It has been run before Deepmimic(Bullet engine ),Deepmimic The reference action of is quaternion format , Can pass BvhToDeepMimic Change your reference action (.bvh), Of course, refer to action (.bvh) Can pass frankmocap Etc smpl Data set format conversion .
relevant : Use Unity and mlagents Carry out intensive learning practice
1. Main item :
1.1 To configure python Environmental Science
pip install mlagents==0.14.1
1.2 To configure Unity Environmental Science
Unity edition 2020.1.2f1
1.3 training
Official training documentation
If you want to be on your own unity Train instead of calling it .X86_64 Words , stay conda Enter the following command at the terminal and then Unity Inside out scene Scene press button button ,--run-id
You can set it by yourself :
mlagents-learn config/marathon_envs_config.yaml --train --run-id=hopper001
Change to your own reference action for training :
stay Unity Click inside Assets/MarathonEnvs/Environments/MarathonManBackflipEnv-v0.prefab
, Then click on AnimatorBase002 Under the Animator, hold Animations Under folder controller Drag the file into the right border Controller in . Then don't build Good export .X86_64, Or choose scenes modify train_environments The number of ( Number of tracks ) stay Unity Training in the software .
next step : Add your own reference action .fbx And corresponding .controller Training , And study reinforcement learning .
2. edition 0.5:
marathon-envs v0.5
Corresponding instruction manual
2.1 To configure python Environmental Science
Corresponding 0.5 edition , After downloading, create python3.6 You can't 3.7 Environment , Under the local installation code directory mlagents==0.5.0
, Then what is missing is loaded . Or first install it with official orders pip install mlagents==1.10.0 mlagents_envs==0.10.0
, Then replace the main package mlagents( I don't know if it's feasible if I haven't tried ):
conda create -n marathon python=3.6
cd ml-agents
python setup.py install
2.2 To configure unity Environmental Science ( In the code above Unity SDK package )
unity API Interface and python API Interface correspondence , This is why you need to install locally mlagents package Why
unty edition (2018.2.14.f) To import from unity SDK Look at ,ubuntu The system starts from unity hub Download the corresponding version in , Click on Website You can jump unity hub download .
2.3 training
Just follow the manual for this part , Points out scene scene , Configure internal or external externel After weight , stay conda Run the following code in and return unity Start training in .
mlagents-learn config/marathon_envs_config.yaml --train --run-id=hopper001
2.4 appendix (0.5 edition python Environmental Science )
Package Version
-------------------- -------------------
absl-py 1.1.0
argon2-cffi 21.3.0
argon2-cffi-bindings 21.2.0
astor 0.8.1
async-generator 1.10
attrs 21.4.0
backcall 0.2.0
bleach 1.5.0
certifi 2016.9.26
cffi 1.15.0
cycler 0.11.0
dataclasses 0.8
decorator 5.1.1
defusedxml 0.7.1
docopt 0.6.2
entrypoints 0.4
gast 0.5.3
grpcio 1.11.1
html5lib 0.9999999
importlib-metadata 4.8.3
iniconfig 1.1.1
ipykernel 5.5.6
ipython 7.16.3
ipython-genutils 0.2.0
ipywidgets 7.7.0
jedi 0.17.2
Jinja2 3.0.3
jsonschema 4.0.0
jupyter 1.0.0
jupyter-client 7.1.2
jupyter-console 6.4.3
jupyter-core 4.9.2
jupyterlab-pygments 0.1.2
jupyterlab-widgets 1.1.0
kiwisolver 1.3.1
Markdown 3.3.7
MarkupSafe 2.0.1
matplotlib 3.0.0
mistune 0.8.4
mlagents 0.5.0
nbclient 0.5.9
nbconvert 6.0.7
nbformat 5.1.3
nest-asyncio 1.5.5
notebook 6.4.10
numpy 1.13.3
packaging 21.3
pandocfilters 1.5.0
parso 0.7.1
pexpect 4.8.0
pickleshare 0.7.5
Pillow 8.4.0
pip 21.2.4
pluggy 1.0.0
prometheus-client 0.14.1
prompt-toolkit 3.0.29
protobuf 3.6.1
ptyprocess 0.7.0
py 1.11.0
pycparser 2.21
Pygments 2.12.0
pyparsing 3.0.9
pyrsistent 0.18.0
pytest 7.1.2
python-dateutil 2.8.2
PyYAML 5.4.1
pyzmq 23.1.0
qtconsole 5.2.2
QtPy 2.0.1
Send2Trash 1.8.0
setuptools 49.6.0.post20210108
six 1.16.0
tensorboard 1.7.0
tensorflow 1.7.0
termcolor 1.1.0
terminado 0.13.0
testpath 0.6.0
tomli 1.2.3
tornado 6.1
traitlets 4.3.3
typing_extensions 4.1.1
wcwidth 0.2.5
Werkzeug 2.0.3
wheel 0.37.1
widgetsnbextension 3.6.0
zipp 3.6.0
3. Follow-up questions
1. I don't know how to call the reference action training set inside the program , I want to replace the reference action file by myself (.fbx) And modify the configuration parameters for intensive learning training .
2. The author's project structure is too large , It's a little difficult to understand deeply and there are too many versions , The code in each version is different , Just like the latest github Code in version , There is a special one inside animation The weight generated by the folder reference action is also .nn, In the old version, there are scenes with various actions , The reference action doesn't know where to put it, and the generated weight suffix is .bytes.
边栏推荐
- LDAP Application Section (4) Jenkins Access
- sys.argv
- Research Report on supply and demand and development prospects of China's high purity aluminum market (2022 Edition)
- Light of domestic games destroyed by cracking
- [2022 广东省赛M] 拉格朗日插值 (多元函数极值 分治NTT)
- Bitwise logical operator
- 704 binary search
- Detailed explanation of heap sorting
- sublime text中conda环境中plt.show无法弹出显示图片的问题
- VMware 虚拟化集群
猜你喜欢
FairGuard游戏加固:游戏出海热潮下,游戏安全面临新挑战
egg. JS project deployment online server
电脑清理,删除的系统文件
Double pointeur en langage C - - modèle classique
目标检测——Pytorch 利用mobilenet系列(v1,v2,v3)搭建yolov4目标检测平台
The harm of game unpacking and the importance of resource encryption
egg. JS getting started navigation: installation, use and learning
Restful API design specification
IOT -- interpreting the four tier architecture of the Internet of things
Delay initialization and sealing classes
随机推荐
Leetcode question brushing (5.31) string
sublime text中conda环境中plt.show无法弹出显示图片的问题
JVM performance tuning and practical basic theory - Part 1
Function coritization
2022.02.13 - NC004. Print number of loops
LDAP應用篇(4)Jenkins接入
The problem and possible causes of the robot's instantaneous return to the origin of the world coordinate during rviz simulation
JVM performance tuning and practical basic theory - Part 1
poi追加写EXCEL文件
Generator parameters incoming parameters
【刷题】牛客网面试必刷TOP101
Detailed explanation of heap sorting
Roguelike game into crack the hardest hit areas, how to break the bureau?
Double pointeur en langage C - - modèle classique
PLT in Matplotlib tight_ layout()
China vanadium battery Market Research and future prospects report (2022 Edition)
sys. argv
Deep learning: derivation of shallow neural networks and deep neural networks
【MySQL】锁
The network model established by torch is displayed by torch viz