当前位置:网站首页>数论函数及其求和 待更新
数论函数及其求和 待更新
2022-07-05 04:43:00 【Strezia】
主要记录一下相关的题目,略过知识讲解。
例题1 数论分块
题目描述
若 x x x 分解质因数结果为 x = p 1 k 1 p 2 k 2 ⋯ p n k n x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n} x=p1k1p2k2⋯pnkn,令 f ( x ) = ( k 1 + 1 ) ( k 2 + 1 ) ⋯ ( k n + 1 ) f(x)=(k_1+1)(k_2+1)\cdots (k_n+1) f(x)=(k1+1)(k2+1)⋯(kn+1),求 ∑ i = l r f ( i ) \sum_{i=l}^rf(i) ∑i=lrf(i) 对 998 244 353 998\,244\,353 998244353 取模的结果。
时间复杂度 O ( n ) O(\sqrt n) O(n)。
思路
首先要知道 f ( x ) f(x) f(x) 其实就是 x x x 的约数个数。(每种素因子都有 k i k_i ki 个那么可以取 0 , 1 , . . . , k i 0,1,...,k_i 0,1,...,ki 一共 k i + 1 k_i+1 ki+1 种取法排列组合,由唯一分解定理显然乘积都是不同的)因为题目要求的是区间和,于是正常地转化为前缀和形式 a n s = ∑ i = 1 r f ( x ) − ∑ i = 1 l − 1 f ( x ) ans=\sum_{i=1}^rf(x)-\sum_{i=1}^{l-1}f(x) ans=∑i=1rf(x)−∑i=1l−1f(x) ,设 S ( n ) = ∑ i = 1 n f ( x ) S(n) = \sum_{i=1}^nf(x) S(n)=∑i=1nf(x),问题转化为了求 S ( n ) S(n) S(n) ,也就是求 1 − n 1-n 1−n 这 n n n 个数的因数个数之和。
1 − n 1-n 1−n 中含有因子 i i i 的数一共有 ⌊ n i ⌋ \lfloor\frac ni\rfloor ⌊in⌋ ,直接用数论分块即可。
代码
int ll, rr, n;
int cal(int l, int r) {
int ansr = 0, ansl = 0;
n = rr;
for(int l=1,r;l<=n;l=r+1){
r=n/(n/l);
ansr+=(n/l)*(r-l+1) % P;
ansr %= P;
}
n = ll;
for(int l=1,r;l<=n;l=r+1){
r=n/(n/l);
ansl+=(n/l)*(r-l+1) % P;
ansl %= P;
}
ansr = (ansr - ansl + P) % P;
return ansr;
}
void solve() {
cin >> ll >> rr;
ll--;
cout << cal(ll, rr) << endl;
}
例题2 数论分块
题目描述
给定一个整数 n n n,你需要求出 ∑ i = 1 n gcd ( i , n ) \sum\limits_{i=1}^n \gcd(i, n) i=1∑ngcd(i,n), n < 1 0 9 n<10^9 n<109
思路
注意到 g c d ( i , n ) gcd(i,n) gcd(i,n) 的取值最多只有 n n n 的约数个,所以考虑按取值分类,而且出现 g c d gcd gcd 的题往往都需要想办法凑出 g c d ( i , j ) = 1 gcd(i,j)=1 gcd(i,j)=1,于是我们把原式化为 ∑ d ∣ n d ∑ i = 1 n [ g c d ( i , n ) = d ] = ∑ d ∣ n d ∑ i = 1 n d [ g c d ( i , n d ) = 1 ] = ∑ d ∣ n d ϕ ( n d ) \sum_{d|n}d\sum_{i=1}^n[gcd(i,n)=d ]=\sum_{d|n}d\sum_{i=1}^{\frac nd}[gcd(i,\frac nd)=1]=\sum_{d|n}d\phi(\frac nd) d∣n∑di=1∑n[gcd(i,n)=d]=d∣n∑di=1∑dn[gcd(i,dn)=1]=d∣n∑dϕ(dn)
可以通过枚举 n n n 的约数直接求,时间复杂度 O ( n ) O(\sqrt n) O(n)。
代码
void solve() {
cin >> n;
ll ans = 0;
for(ll i = 1; i * i <= n; i++) {
if(n % i == 0) {
ans += i * phi(n/i);
if(n/i!=i) {
ans += (n/i) * phi(i);
}
}
}
cout << ans << endl;
}
莫比乌斯函数

常用卷积
ϵ = μ ∗ 1 , I d = ϕ ∗ 1 \epsilon=\mu *1, Id=\phi*1 ϵ=μ∗1,Id=ϕ∗1 。
即 ϵ ( n ) = ∑ d ∣ n μ ( d ) \epsilon(n) = \sum_{d|n}\mu(d) ϵ(n)=∑d∣nμ(d) 。其中 ϵ ( n ) = 1 \epsilon(n)= 1 ϵ(n)=1 当且仅当 n = 1 n=1 n=1,否则 = 0 =0 =0 。
引例
给定 n , m n, m n,m,求二元组 ( x , y ) (x,y) (x,y) 的个数,满足 1 ≤ x ≤ n 1\leq x\leq n 1≤x≤n , 1 ≤ y ≤ m 1\leq y\leq m 1≤y≤m ,且 g c d ( x , y ) = 1 gcd(x,y)=1 gcd(x,y)=1 。 n , m ≤ 1 0 7 n,m\leq 10^7 n,m≤107 ,至多 1 0 4 10^4 104 组数据。
思路
∑ x = 1 n ∑ y = 1 m [ g c d ( x , y ) = 1 ] = ∑ x = 1 n ∑ y = 1 m ϵ ( g c d ( x , y ) ) = ∑ x = 1 n ∑ y = 1 m ∑ d ∣ g c d ( x , y ) μ ( d ) \sum_{x=1}^n\sum_{y=1}^m[gcd(x,y)=1]=\sum_{x=1}^n\sum_{y=1}^m\epsilon (gcd(x,y))=\sum_{x=1}^n\sum_{y=1}^m\sum_{d|gcd(x,y)}\mu(d) x=1∑ny=1∑m[gcd(x,y)=1]=x=1∑ny=1∑mϵ(gcd(x,y))=x=1∑ny=1∑md∣gcd(x,y)∑μ(d)
= ∑ x = 1 n ∑ y = 1 m ∑ d ∣ x , d ∣ y μ ( d ) = = ∑ d = 1 m i n ( n , m ) μ ( d ) ⌊ n d ⌋ ⌊ m d ⌋ =\sum_{x=1}^n\sum_{y=1}^m\sum_{d|x,d|y}\mu(d)==\sum_{d=1}^{min(n,m)}\mu(d)\lfloor\frac nd\rfloor\lfloor\frac md\rfloor =x=1∑ny=1∑md∣x,d∣y∑μ(d)==d=1∑min(n,m)μ(d)⌊dn⌋⌊dm⌋
对上式预处理 μ \mu μ 及其前缀和,按 ⌊ n d ⌋ ⌊ m d ⌋ \lfloor\frac nd\rfloor\lfloor\frac md\rfloor ⌊dn⌋⌊dm⌋ 的取值分段,就可以每组询问 O ( n ) O(\sqrt n) O(n) 解决问题。
例题3 莫比乌斯反演
题目描述
设 d ( x ) d(x) d(x) 为 x x x 的约数个数,给定 n , m n,m n,m,求
∑ i = 1 n ∑ j = 1 m d ( i j ) \sum_{i=1}^n\sum_{j=1}^md(ij) i=1∑nj=1∑md(ij)
【数据范围】
对于 100 % 100\% 100% 的数据, 1 ≤ T , n , m ≤ 50000 1\le T,n,m \le 50000 1≤T,n,m≤50000。
思路
首先有结论:
d ( i j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1] d(ij)=x∣i∑y∣j∑[gcd(x,y)=1]
则原式:
∑ i = 1 n ∑ j = 1 m d ( i j ) = ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] = ∑ x = 1 n ∑ y = 1 m [ g c d ( x , y ) = 1 ] ⌊ n x ⌋ ⌊ m y ⌋ \sum_{i=1}^n\sum_{j=1}^md(ij)=\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]=\sum_{x=1}^n\sum_{y=1}^m[gcd(x,y)=1]\lfloor\frac nx\rfloor\lfloor\frac my\rfloor i=1∑nj=1∑md(ij)=i=1∑nj=1∑mx∣i∑y∣j∑[gcd(x,y)=1]=x=1∑ny=1∑m[gcd(x,y)=1]⌊xn⌋⌊ym⌋
将引例中结论带入:
= ∑ d = 1 m i n ( n , m ) μ ( d ) ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ n x d ⌋ ⌊ m y d ⌋ = ∑ d = 1 m i n ( n , m ) μ ( d ) ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ ⌊ ⌊ n d ⌋ x ⌋ ⌊ ⌊ m d ⌋ y ⌋ =\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^{\lfloor\frac nd\rfloor}\sum_{y=1}^{\lfloor\frac md \rfloor}\lfloor\frac n{xd}\rfloor\lfloor\frac m{yd}\rfloor=\sum_{d=1}^{min(n,m)}\mu(d)\sum_{x=1}^{\lfloor\frac nd\rfloor}\sum_{y=1}^{\lfloor\frac md \rfloor}\lfloor\frac{\lfloor\frac nd\rfloor}x\rfloor\lfloor\frac {\lfloor \frac md\rfloor}y\rfloor =d=1∑min(n,m)μ(d)x=1∑⌊dn⌋y=1∑⌊dm⌋⌊xdn⌋⌊ydm⌋=d=1∑min(n,m)μ(d)x=1∑⌊dn⌋y=1∑⌊dm⌋⌊x⌊dn⌋⌋⌊y⌊dm⌋⌋
令 f ( n ) = ∑ i = 1 n ⌊ n i ⌋ f(n)=\sum_{i=1}^n\lfloor\frac ni\rfloor f(n)=∑i=1n⌊in⌋ ,则
= ∑ d = 1 m i n ( n , m ) μ ( d ) f ( ⌊ n d ⌋ ) f ( ⌊ m d ⌋ ) =\sum_{d=1}^{min(n, m)}\mu(d)f(\lfloor\frac nd\rfloor)f(\lfloor\frac md\rfloor) =d=1∑min(n,m)μ(d)f(⌊dn⌋)f(⌊dm⌋)
又 f ( n ) = ∑ i = 1 n ⌊ n i ⌋ = ∑ k = 1 n d ( k ) f(n)=\sum_{i=1}^n\lfloor\frac ni\rfloor=\sum_{k=1}^nd(k) f(n)=∑i=1n⌊in⌋=∑k=1nd(k)
故可以通过欧拉筛 O ( n ) O(n) O(n) 预处理出 d ( n ) d(n) d(n),通过前缀和得到 f ( n ) f(n) f(n),可以每次询问 O ( n ) O(\sqrt n) O(n) 回答。
代码
int mu[maxn], prim[maxn], sum[maxn], cnt;
int g[maxn];
bool vis[maxn];
void get_mu(int n)
{
mu[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i]){
prim[++cnt]=i;mu[i]=-1;}
for(int j=1;j<=cnt&&prim[j]*i<=n;j++)
{
vis[prim[j]*i]=1;
if(i%prim[j]==0)break;
else mu[i*prim[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+mu[i];
for(int i=1;i<=n;i++)
{
long long ans=0;
for(int l=1,r;l<=i;l=r+1)
{
r=(i/(i/l));
ans+=1ll*(r-l+1)*1ll*(i/l);
}
g[i]=ans;
}
}
void solve() {
int n, m;
cin >> n >> m;
int ans = 0;
int mn = min(n, m);
for(int l = 1, r; l <= mn; l = r + 1){
r = min(n/(n/l), m/(m/l));
ans += (sum[r] - sum[l-1]) * g[n/l] * g[m/l];
}
cout << ans << endl;
}
边栏推荐
- Interface joint commissioning test script optimization V5.0 (end)
- How to force activerecord to reload a class- How do I force ActiveRecord to reload a class?
- Mode in BST (binary tree & Notes on question brushing)
- Neural networks and deep learning Chapter 3: linear model reading questions
- 2021 electrician Cup - high speed rail traction power supply system operation data analysis and equivalent modeling ideas + code
- JMeter -- distributed pressure measurement
- Error statuslogger log4j2 could not find a logging implementation
- Cookie learning diary 1
- 2022-2028 global and Chinese video coding and transcoding Market Research Report
- 假设检验——《概率论与数理统计》第八章学习笔记
猜你喜欢

自动语音识别(ASR)研究综述
![[crampon game] MC tutorial - first day of survival](/img/81/82034c0382f545c39bd8c15f132ec7.jpg)
[crampon game] MC tutorial - first day of survival
![[illusory engine UE] method to realize close-range rotation of operating objects under fuzzy background and pit recording](/img/11/b55f85ef9e1f22254218cb9083b823.png)
[illusory engine UE] method to realize close-range rotation of operating objects under fuzzy background and pit recording

Qt蓝牙:搜索蓝牙设备的类——QBluetoothDeviceDiscoveryAgent

TPG x AIDU | AI leading talent recruitment plan in progress!

Hypothesis testing -- learning notes of Chapter 8 of probability theory and mathematical statistics
![[AI bulletin 20220211] the hard core up owner has built a lidar and detailed AI accelerator](/img/cc/06580ce7b553182968d273841a78b4.jpg)
[AI bulletin 20220211] the hard core up owner has built a lidar and detailed AI accelerator

直播預告 | 容器服務 ACK 彈性預測最佳實踐

CSDN body auto generate directory

CSDN正文自动生成目录
随机推荐
OWASP top 10 vulnerability Guide (2021)
[crampon programming] lintcode decoding Encyclopedia - 872 termination process
[finebi] the process of making custom maps using finebi
Practice | mobile end practice
Sword finger offer 04 Search in two-dimensional array
[goweb development] Introduction to authentication modes based on cookies, sessions and JWT tokens
Observable time series data downsampling practice in Prometheus
Cookie learning diary 1
windows下Redis-cluster集群搭建
Introduce Hamming distance and calculation examples
[Business Research Report] Research Report on male consumption trends in other economic times -- with download link
Reading and visualization of DICOM, MHD and raw files in medical imaging
Is $20billion a little less? Cisco is interested in Splunk?
Sword finger offer 07 Rebuild binary tree
Private collection project practice sharing [Yugong series] February 2022 U3D full stack class 006 unity toolbar
How can CIOs use business analysis to build business value?
The remainder operation is a hash function
[thingsboard] how to replace the homepage logo
Decimal to hexadecimal
PHP读取ini文件并修改内容写入