当前位置:网站首页>Flink前期代码结构

Flink前期代码结构

2022-08-02 14:05:00 大学生爱编程

1. 小知识

1.可以做离线和实时但是侧重于实时,flink绝对的一条条处理
2.流处理:数据具体大小未知,进行简单操作,及时响应不会结束
批处理:数据大小固定,可以进行复杂操作,需要离线处理
3.为了统一API,flink中数据都视为流,同一套代码可以进行流批处理统一
无界流:有开始没有定义结束,持续处理无界流,在摄取事件后立即处理事件,需要按照事件发生的顺序处理事件
有界流:有定义开始和结束,在执行计算之前摄取所有数据来处理有界流,处理有界流不需要有序摄取,因为可以始终对有界数据集进行排序,有界流的处理也成为批处理
将hdfs的数据也视为有界流
4.MQ:消息队列 kafka
5.离线计算与实时计算:
离线:数据量大周期长,数据是固定的,可进行复杂操作,方便查询计算结果,可以进行多次操作
实时:数据实时到达,数据到达次序独立,无法预估数据容量,再次提取数据的代价大(因为流处理程序时不停止的,可能已经处理一年的数据了再重写代码成本太高)
6.Flink面临的难点:
任务失败到重启之间的时间内数据如何不丢失?启动之前的数据如何保证只处理一次?
7.什么是Flink?
分布式计算引擎,侧重于实时计算,对无界和有界流进行有状态计算(进行累加)
8.事件(数据)驱动,有数据来了就计算{事件时间,状态计算,唯一一次计算,快速计算,基于内存}
9.运行方式:local,cluster,cloud
10.学习重点:DataStreamAPI SQL Stateful Stream Processing
11.在Flink中SQL比DSL好用
12.读取数据(source),处理数据(transformation),保存数据(sink)

2. idea中的操作

2.1前期的依赖

新建模块,独立依赖,独立配置

版本的控制:
    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <flink.version>1.15.0</flink.version>
        <scala.binary.version>2.12</scala.binary.version>
        <scala.version>2.12.7</scala.version>
        <log4j.version>2.17.1</log4j.version>
    </properties>

前期的三个依赖:
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-walkthrough-common</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_${scala.binary.version}                </artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>

2.2 加个插件将Java和Scala分开写代码

<build>
        <plugins>

            <!-- Java Compiler -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>

            <!-- Scala Compiler -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
                <configuration>
                    <args>
                        <arg>-nobootcp</arg>
                    </args>
                </configuration>
            </plugin>


            <plugin>
                <groupId>org.codehaus.mojo</groupId>
                <artifactId>build-helper-maven-plugin</artifactId>
                <version>1.7</version>
                <executions>
                    <!-- Add src/main/scala to eclipse build path -->
                    <execution>
                        <id>add-source</id>
                        <phase>generate-sources</phase>
                        <goals>
                            <goal>add-source</goal>
                        </goals>
                        <configuration>
                            <sources>
                                <source>src/main/scala</source>
                            </sources>
                        </configuration>
                    </execution>
                    <!-- Add src/test/scala to eclipse build path -->
                    <execution>
                        <id>add-test-source</id>
                        <phase>generate-test-sources</phase>
                        <goals>
                            <goal>add-test-source</goal>
                        </goals>
                        <configuration>
                            <sources>
                                <source>src/test/scala</source>
                            </sources>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

2.3 写代码的基本操作

import org.apache.flink.streaming.api.scala._
object Demo1WordCount {
  def main(args: Array[String]): Unit = {
    /**
     * 创建flink环境
     */
    val env: StreamExecutionEnvironment =StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)        //设置并行度
    /**
     * 读取数据
     */
    val linesDS: DataStream[String] =env.socketTextStream("master",8888)
    /**
     * 统计单词数量
     */
    val wordDS: DataStream[String] =linesDS.flatMap((line:String)=>line.split(","))
    val kvDS: DataStream[(String, Int)] =wordDS.map(word=>(word,1))
    val groupDS: KeyedStream[(String, Int), String] =kvDS.keyBy(kv=>kv._1)      //按照单词进行分组
    val countDS: DataStream[(String, Int)] =groupDS.sum(1)
    /**
     * 查看结果
     */
    countDS.print()
    /**
     * 启动flink
     */
    env.execute()
  }
}

结果:
1> (java,1)
1> (java,2)
1> (java,3)
1> (java,4)
4> (hadoop,1)
1> (java,5)
4> (flink,1)

3. Spark和Flink的区别

在这里插入图片描述

1.因为spark侧重批处理,所以传来一批数据可以在map端进行预聚合,减少shuffle阶段的数据量,先执行map端的task再执行reduce端的task,底层是MR模型
2.而侧重于流处理的flink是同时开启所有的task等待数据的到达,是持续流模型,数据处理的延迟低但是数据默认不能做预聚合,中间shuffle阶段要传输所有数据并且数据不会落地到磁盘
3.flink中上游的task将数据发送到下游task时并不是每一条发送一次,默认时32kb或者200毫秒发送一次数据,提高发送数据的性能
4.spark和flink是粗粒度资源调度,mr是细粒度的

在创建环境时可以设置:
env.setParallelism(1)          并行度
env.setBufferTimeout(5000)     延迟时间默认是200

4. Source(官网1.9.1版更全)

4.1基于本地集合

1.是有界流,执行完毕后会结束任务
2.默认仍然当作流处理的,每一条都会处理
设置执行模式:(新版本才有)
批处理:env.setRuntimeMode(RuntimeExecutionMode.BATCH)  仅可处理有界流
流处理:env.setRuntimeMode(RuntimeExecutionMode.STREAM)  有界流或无界流都可以处理

两者的展示结果不同:一个是汇总的,一个是一条条的

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.streaming.api.scala._
object Demo1ListSource {
  def main(args: Array[String]): Unit = {
    //创建flink环境
    val env: StreamExecutionEnvironment =StreamExecutionEnvironment.getExecutionEnvironment
    env.setRuntimeMode(RuntimeExecutionMode.BATCH)   //设置批处理模式   
//基于本地的集合     有界流
    val linesDS: DataStream[String] =env.fromCollection(List("java,hadoop","java,flink","java,flink"))
    linesDS
      .flatMap(_.split(","))
      .map(word=>(word,1))
      .keyBy(kv=>kv._1)
      .sum(1)
      .print()
   env.execute()

4.2 基于文件

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.streaming.api.scala._

object Demo2FileSource {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment =StreamExecutionEnvironment.getExecutionEnvironment
    env.setRuntimeMode(RuntimeExecutionMode.BATCH)
    /**
     * 基于集合构建有界流
     */
    val studentDS: DataStream[String] =env.readTextFile("data/students.txt")
    //切分成数组,取出班级直接构建kv二元组
    val clazzDS: DataStream[(String, Int)] =studentDS.map(stu=>(stu.split(",")(4),1))
    val clazzNumDS: DataStream[(String, Int)] =clazzDS
      .keyBy(kv=>kv._1)
      .sum(1)
    clazzNumDS.print()
    env.execute()
  }
}

4.3 基于网络套接字

无界流只能使用流处理模式,默认都是无界流

4.4 使用自定义source读MySQL中的数据(java代码能连接的数据源都能读)

数据库中的数据根据解析数据时是否结束循环来判断有界无界流 ,但都采用流处理模式

object Demo4TextStream {
  def main(args: Array[String]): Unit = {
  //创建flink环境
    val env: StreamExecutionEnvironment =StreamExecutionEnvironment.getExecutionEnvironment
    val mysqlDS: DataStream[String] =env.addSource(new MysqlSource)   //传接口的子类,接收上游的数据
  mysqlDS     //处理上游传来的数据
    .map(stu=>(stu.split("\t")(4),1))
    .keyBy(ky=>ky._1)
    .sum(1)
    .print()
  env.execute()     //执行flink
  }
  
  //继承SourceFunction[String]接口,指定返回类型,实现方法
class MysqlSource extends SourceFunction[String]{
    /**
     * 读取外部数据的方法
     * @param sourceContext  上下文对象  将读取到的数据发送到下游
     *                       仅执行一次
     */
    override def run(sourceContext: SourceFunction.SourceContext[String]): Unit = {
   //使用jdbc读取MySQL数据,将读取到的数据发送到下游
     Class.forName("com.mysql.jdbc.Driver")
     val con: Connection =DriverManager.getConnection("jdbc:mysql://master:3306/bigdata","root","123456")
      //编写sql
      val stat: PreparedStatement =con.prepareStatement("select * from students")
      val resultSet: ResultSet =stat.executeQuery()   //执行查询
      //解析数据
      while(resultSet.next()){
        val id: Long =resultSet.getLong("id")
        val name: String =resultSet.getString("name")
        val age: Long =resultSet.getLong("age")
        val gender: String =resultSet.getString("gender")
        val clazz: String =resultSet.getString("clazz")
      //通过sourceContext将数据发送给下游
        sourceContext.collect(s"$id\t$name\t$age\t$gender\t$clazz")
      }
      stat.close()      //释放
      con.close()
    }
    
    //任务取消时用于回收资源
    override def cancel(): Unit = {

    } 

5. Transformation(注意导包,有一个特殊包)

5.1 Map

import org.apache.flink.api.common.functions.MapFunction
import org.apache.flink.streaming.api.scala._

val env: StreamExecutionEnvironment =StreamExecutionEnvironment.getExecutionEnvironment
    val studentDS: DataStream[String] = env.readTextFile("data/students.txt")
    //取出性别人数 ,匿名内部类实现方法
    val kvDS: DataStream[(String, Int)] =studentDS.map(new MapFunction[String,(String,Int)]{
      override def map(t: String): (String, Int) = {
        val gender: String =t.split(",")(3)
        (gender,1)
      }
    })
    kvDS.print()
    env.execute()

5.2 flatMap

import org.apache.flink.api.common.functions.FlatMapFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.util.Collector

传入一条数据返回多条数据,一行转多行
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    val linesDS: DataStream[String] = env.readTextFile("data/words.txt")
    val wordsDS: DataStream[String] =linesDS.flatMap((new FlatMapFunction[String,String]{
      override def flatMap(t: String, collector: Collector[String]): Unit = {
        val split: Array[String] =t.split(",")
        for(word <- split){
          collector.collect(word)
        }
      }
    }))
    wordsDS.print() 
    env.execute()

5.3 filter

import org.apache.flink.api.common.functions.FilterFunction
import org.apache.flink.streaming.api.scala._

 //读取文件
    val linesDS: DataStream[String] =env.readTextFile("data/students.txt")
    /**
     * 传入一条数据返回一个布尔值,true的保留
     */
    val filterDS: DataStream[String] =linesDS.filter(new FilterFunction[String]{
      override def filter(t: String): Boolean = {
        val gender: String =t.split(",")(3)
        "女".equals(gender)
      }
    })
    filterDS.print()
    env.execute()

5.4 keyBy

import org.apache.flink.api.java.functions.KeySelector
import org.apache.flink.streaming.api.scala._

//创建flink环境    读取socket套接字
    val env: StreamExecutionEnvironment =StreamExecutionEnvironment.getExecutionEnvironment
    val linesDS: DataStream[String] =env.socketTextStream("master",8888)
    val wordsDS: DataStream[String] =linesDS.flatMap(word=>word.split(","))
    val kvDS: DataStream[(String, Int)] =wordsDS.map(word=>(word,1))
//   读取文件中的单词,然后进行统计
//   先进行keyBy,在进行聚合
   
    val keyedStream: KeyedStream[(String, Int), String] =kvDS.keyBy(new KeySelector[(String,Int),String]{
      override def getKey(in: (String, Int)): String = {
        in._1
      }
    })
    val sumDS: DataStream[(String, Int)] =keyedStream.sum(1)

    sumDS.print()
    env.execute()

5.5 window

导包把整个包都导进来

import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow

object Window {
  def main(args: Array[String]): Unit = {
    //创建flink环境,读取socket内容,统计
    val env: StreamExecutionEnvironment =StreamExecutionEnvironment.getExecutionEnvironment
    val linesDS: DataStream[String] =env.socketTextStream("master",8888)
    val wordsDS: DataStream[String] =linesDS.flatMap(_.split(","))
    val kvDS: DataStream[(String, Int)] =wordsDS.map(word=>(word,1))
    /**
     * 统计最近10秒的单词数量,每5秒统计一次
     * 分组之后再根据时间窗口进行一次分组然后再聚合
     */
    val keyByDS: KeyedStream[(String, Int), String] =kvDS.keyBy(kv=>kv._1)
    val windowDS: WindowedStream[(String, Int), String, TimeWindow] = keyByDS.window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5)))
    val countDS: DataStream[(String, Int)] = windowDS.sum(1)

    countDS.print()
    env.execute()

  }
}

5.6 union

导包把整个包都导进来

import org.apache.flink.streaming.api.scala._

object Union {
  def main(args: Array[String]): Unit = {
    //创建flink环境
    val env: StreamExecutionEnvironment =StreamExecutionEnvironment.getExecutionEnvironment
    val ds1: DataStream[Int] =env.fromCollection(List(1,2,3,4,5))
    val ds2: DataStream[Int] =env.fromCollection(List(2,3,4,5,6))
    //进行union的类型要一致
    val unionDS: DataStream[Int] =ds1.union(ds2)
    unionDS.print()
    env.execute()
  }
}

6. 保存数据–sink

结果写到文件中:
老版本:
countDS.writeAsText("data/flink/clazz_num")
新版本:(犯了个错误,主类名和包中的类名冲突)
至少包含多少时间的数据
多少时间没有新的数据
数据量达到多少
import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.serialization.SimpleStringEncoder
import org.apache.flink.configuration.MemorySize
import org.apache.flink.connector.file.sink.FileSink
import org.apache.flink.core.fs.Path
import org.apache.flink.streaming.api.functions.sink.filesystem.StreamingFileSink
import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy
import org.apache.flink.streaming.api.scala._
import java.time.Duration

object Demo1FileSink {
  def main(args: Array[String]): Unit = {
    //创建flink环境
    val env: StreamExecutionEnvironment =StreamExecutionEnvironment.getExecutionEnvironment
    //设置处理模式   批处理
    env.setRuntimeMode(RuntimeExecutionMode.BATCH)
    //读取数据  统计班级人数   保存结果
    val kvDS: DataStream[(String, Int)] =env.readTextFile("data/students.txt").map(stu=>(stu.split(",")(4),1))
    val countDS: DataStream[(String, Int)] =kvDS.keyBy(kv=>kv._1).sum(1)
   // countDS.writeAsText("data/flink/clazz_num")
    /**
     * 新版本指定路径编码格式指定滚动生成的策略
     */
    val sink: FileSink[(String, Int)] = FileSink
      .forRowFormat(new Path("data/flink/clazz_num"), new SimpleStringEncoder[(String, Int)]("UTF-8"))
      .withRollingPolicy(
        DefaultRollingPolicy.builder()
          //至少包含多少时间的数据
          .withRolloverInterval(Duration.ofSeconds(10))
          //多少时间没有新的数据
          .withInactivityInterval(Duration.ofSeconds(10))
          //数据达到多大
          .withMaxPartSize(MemorySize.ofMebiBytes(1))
          .build())
      .build()
 //使用sink   
    countDS.sinkTo(sink)
    env.execute()
  }
}

6.2自定义sink

//使用自定义sink
    linesDS.addSink(new SinkFunction[String]{
      override def invoke(value: String, context: SinkFunction.Context): Unit = {
        println(value)
      }
    })
      env.execute()

6.3自定义sink2

socket中的数据保存到MySQL中
SinkFunction

object MysqlSink1 {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)
    val countDS: DataStream[(String, Int)] =linesDS.flatMap(line=>line.split(","))
      .map(word=>(word,1)).keyBy(_._1).sum(1)
    countDS.addSink(new MysqlSink())
    env.execute()
  }

  class MysqlSink extends SinkFunction[(String, Int)]{
    override def invoke(value: (String, Int), context: SinkFunction.Context): Unit = {
      /**
       * invoke 每一条数据都会执行一次
       * value 一行数据
       * context   上下文对象
       */
      Class.forName("com.mysql.jdbc.Driver")
      val con: Connection =DriverManager.getConnection("jdbc:mysql://master:3306/bigdata?","root","123456")
      val stat: PreparedStatement =con.prepareStatement("replace into word_count(word,c) values(?,?)")
      stat.setString(1,value._1)
      stat.setInt(2,value._2)
      stat.execute()
      stat.close()
      con.close()
    }
  }
}

RichSinkFunction

socket中数据保存至MySQL中:实现RichSinkFunction,是sinkFunction的子类

object Demo4MysqlSink {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)
    //统计单词数量
    val countDS: DataStream[(String, Int)] =linesDS.flatMap(line=>line.split(","))
    .map(word=>(word,1)).keyBy(_._1).sum(1)
    countDS.addSink(new MysqlSink())
    env.execute()
  }
  class MysqlSink extends RichSinkFunction[(String, Int)]{
    var con: Connection=_         //注意val于var的变化
    var stat: PreparedStatement=_
    override def open(parameters: Configuration): Unit = {
      Class.forName("com.mysql.jdbc.Driver")
      con= DriverManager.getConnection("jdbc:mysql://master:3306/bigdata", "root", "123456")
      stat = con.prepareStatement("replace into word_count(word,c) values(?,?)")
    }
    override def close(): Unit = {
      stat.close()
      con.close()
    }
    override def invoke(kv: (String, Int)): Unit = {
      stat.setString(1, kv._1)
      stat.setInt(2, kv._2)
      stat.execute()
    }
  }
}
open:在invoke之前执行,每一个task中只执行一次,一般用于初始化数据库连接
close:任务关闭时用于回收资源
invoke:每一条数据执行一次,两个参数,前者表示一行数据,后者表示上下文对象
replace into:替换插入,不存在则插入,存在则更新,需要设计主键
原网站

版权声明
本文为[大学生爱编程]所创,转载请带上原文链接,感谢
https://blog.csdn.net/qq_45409791/article/details/125938925