当前位置:网站首页>[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
2022-07-03 18:12:00 【Programmer community】
List of articles
- One 、 Exponential generating function
- Two 、 Permutation number exponential generating function = General generating function of combinatorial number
- 3、 ... and 、 Example of exponential generating function
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
One 、 Exponential generating function
Of multiple sets Combinatorial number , Use Generating function Calculate ;
Of multiple sets Number of permutations , Use Exponential generating function Calculate ;
Sequence
{
a
n
}
\{ a_n \}
{ an} , The general formula is
a
n
a_n
an ,
{
a
n
}
\{ a_n \}
{ an} Of The general generating function is
G
(
x
)
=
∑
n
=
0
∞
a
n
x
n
G(x) = \sum\limits_{n=0}^{\infty}a_n x^n
G(x)=n=0∑∞anxn ,
{
a
n
}
\{ a_n \}
{ an} Of The exponential generating function is
G
e
(
x
)
=
∑
n
=
0
∞
a
n
x
n
n
!
G_e(x) = \sum\limits_{n=0}^{\infty}a_n \cfrac{x^n}{n!}
Ge(x)=n=0∑∞ann!xn
\ \ \ \,
* ( Key formula )
{
a
n
}
\{ a_n \}
{ an} Of Exponential generating function It is based on the general generating function Divided by
n
!
n!
n! ;
Two 、 Permutation number exponential generating function = General generating function of combinatorial number
Number of permutations :
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \cfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n! ,
n
n
n Of the elements
r
r
r Elements , Duplicate permutations are not allowed ;
Combinatorial number :
C
(
n
,
r
)
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \cfrac{n!}{r!(n-r)!}
C(n,r)=r!(n−r)!n! ,
n
n
n Of the elements
r
r
r Elements , Duplicate combinations are not allowed ;
The generating function corresponding to the combination number yes
G
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
G(x) = \sum\limits_{n=0}^{\infty}\dbinom{m}{n} x^n
G(x)=n=0∑∞(nm)xn , After convergence
(
1
+
x
)
n
(1+x)^n
(1+x)n
The generating function corresponding to the permutation number yes
G
(
x
)
=
∑
n
=
0
∞
P
(
m
,
n
)
x
n
G(x) = \sum\limits_{n=0}^{\infty}P(m, n) x^n
G(x)=n=0∑∞P(m,n)xn , according to
n
!
C
(
m
,
n
)
=
P
(
m
,
n
)
n! C(m,n) = P(m, n)
n!C(m,n)=P(m,n) , The generating function of the permutation , Each term is divided by
n
!
n!
n! , You can get the generating function of the corresponding combination number ;
The exponential generating function corresponding to the permutation count yes
G
e
(
x
)
=
∑
n
=
0
∞
P
(
m
,
n
)
x
n
n
!
G_e(x) = \sum\limits_{n=0}^{\infty}P(m, n) \cfrac{x^n}{n!}
Ge(x)=n=0∑∞P(m,n)n!xn , according to according to
C
(
m
,
n
)
=
P
(
m
,
n
)
n
!
C(m,n) =\cfrac{ P(m, n)}{n!}
C(m,n)=n!P(m,n) , It can be concluded as follows :
Exponential generating function of permutation count
=
=
= General generating function of combinatorial counting
3、 ... and 、 Example of exponential generating function
The sequence
b
n
=
1
b_n=1
bn=1 , seek
{
b
n
}
\{ b_n \}
{ bn} The exponential generating function of ;
The sequence is
{
1
,
1
,
1
,
⋯
}
\{1, 1 ,1 , \cdots\}
{ 1,1,1,⋯}
Ordinary generating functions
G
(
x
)
=
1
+
x
+
x
2
+
⋯
=
∑
n
=
0
∞
x
n
G(x) = 1 + x + x^2 + \cdots = \sum\limits_{n=0}^{\infty}x^n
G(x)=1+x+x2+⋯=n=0∑∞xn
Exponential generating function
G
e
(
x
)
=
∑
n
=
0
∞
x
n
n
!
=
e
x
G_e(x) = \sum\limits_{n=0}^{\infty}\cfrac{x^n}{n!}=e^x
Ge(x)=n=0∑∞n!xn=ex
边栏推荐
- What kind of experience is it when the Institute earns 20000 yuan a month?
- Gear2021 monthly update - December
- PHP MySQL Update
- Line by line explanation of yolox source code of anchor free series network (5) -- mosaic data enhancement and mathematical understanding
- English grammar_ Noun classification
- 分布式的任务分发框架-Gearman
- Interviewer: why is the value nil not equal to nil?
- Image 24 bit depth to 8 bit depth
- English语法_名词 - 分类
- Design limitations of structure type (struct)
猜你喜欢
PHP MySQL preprocessing statement
Embedded-c language-7
The third day of writing C language by Yabo people
English语法_形容词/副词3级 - 倍数表达
Research Report on market demand and investment planning for the development of China's office chair industry, 2022-2028
How to install PHP on Ubuntu 20.04
聊聊支付流程的设计与实现逻辑
Three gradient descent methods and code implementation
Computer graduation design PHP sports goods online sales system website
Grammaire anglaise Nom - Classification
随机推荐
Research Report on market demand and investment planning for the development of China's office chair industry, 2022-2028
Ssl/bio of OpenSSL_ get_ fd
Computer graduation project PHP library book borrowing management system
PHP MySQL create database
MySQL has been stopped in the configuration interface during installation
Redis on local access server
Ml (machine learning) softmax function to realize the classification of simple movie categories
Keepalived 设置不抢占资源
(8) HS corner detection
Mathematical formula (test)
Website with JS doesn't work in IE9 until the Developer Tools is activated
PHP MySQL order by keyword
English語法_名詞 - 分類
[Tongxin UOS] scanner device management driver installation
数学公式(测试)
Computer graduation design PHP sports goods online sales system website
Theoretical description of linear equations and summary of methods for solving linear equations by eigen
This diversion
Redis cache avalanche, penetration, breakdown
Bidding procurement scheme management of Oracle project management system