当前位置:网站首页>[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
2022-07-03 18:12:00 【Programmer community】
List of articles
- One 、 Exponential generating function
- Two 、 Permutation number exponential generating function = General generating function of combinatorial number
- 3、 ... and 、 Example of exponential generating function
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
One 、 Exponential generating function
Of multiple sets Combinatorial number , Use Generating function Calculate ;
Of multiple sets Number of permutations , Use Exponential generating function Calculate ;
Sequence
{
a
n
}
\{ a_n \}
{ an} , The general formula is
a
n
a_n
an ,
{
a
n
}
\{ a_n \}
{ an} Of The general generating function is
G
(
x
)
=
∑
n
=
0
∞
a
n
x
n
G(x) = \sum\limits_{n=0}^{\infty}a_n x^n
G(x)=n=0∑∞anxn ,
{
a
n
}
\{ a_n \}
{ an} Of The exponential generating function is
G
e
(
x
)
=
∑
n
=
0
∞
a
n
x
n
n
!
G_e(x) = \sum\limits_{n=0}^{\infty}a_n \cfrac{x^n}{n!}
Ge(x)=n=0∑∞ann!xn
\ \ \ \,
* ( Key formula )
{
a
n
}
\{ a_n \}
{ an} Of Exponential generating function It is based on the general generating function Divided by
n
!
n!
n! ;
Two 、 Permutation number exponential generating function = General generating function of combinatorial number
Number of permutations :
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \cfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n! ,
n
n
n Of the elements
r
r
r Elements , Duplicate permutations are not allowed ;
Combinatorial number :
C
(
n
,
r
)
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \cfrac{n!}{r!(n-r)!}
C(n,r)=r!(n−r)!n! ,
n
n
n Of the elements
r
r
r Elements , Duplicate combinations are not allowed ;
The generating function corresponding to the combination number yes
G
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
G(x) = \sum\limits_{n=0}^{\infty}\dbinom{m}{n} x^n
G(x)=n=0∑∞(nm)xn , After convergence
(
1
+
x
)
n
(1+x)^n
(1+x)n
The generating function corresponding to the permutation number yes
G
(
x
)
=
∑
n
=
0
∞
P
(
m
,
n
)
x
n
G(x) = \sum\limits_{n=0}^{\infty}P(m, n) x^n
G(x)=n=0∑∞P(m,n)xn , according to
n
!
C
(
m
,
n
)
=
P
(
m
,
n
)
n! C(m,n) = P(m, n)
n!C(m,n)=P(m,n) , The generating function of the permutation , Each term is divided by
n
!
n!
n! , You can get the generating function of the corresponding combination number ;
The exponential generating function corresponding to the permutation count yes
G
e
(
x
)
=
∑
n
=
0
∞
P
(
m
,
n
)
x
n
n
!
G_e(x) = \sum\limits_{n=0}^{\infty}P(m, n) \cfrac{x^n}{n!}
Ge(x)=n=0∑∞P(m,n)n!xn , according to according to
C
(
m
,
n
)
=
P
(
m
,
n
)
n
!
C(m,n) =\cfrac{ P(m, n)}{n!}
C(m,n)=n!P(m,n) , It can be concluded as follows :
Exponential generating function of permutation count
=
=
= General generating function of combinatorial counting
3、 ... and 、 Example of exponential generating function
The sequence
b
n
=
1
b_n=1
bn=1 , seek
{
b
n
}
\{ b_n \}
{ bn} The exponential generating function of ;
The sequence is
{
1
,
1
,
1
,
⋯
}
\{1, 1 ,1 , \cdots\}
{ 1,1,1,⋯}
Ordinary generating functions
G
(
x
)
=
1
+
x
+
x
2
+
⋯
=
∑
n
=
0
∞
x
n
G(x) = 1 + x + x^2 + \cdots = \sum\limits_{n=0}^{\infty}x^n
G(x)=1+x+x2+⋯=n=0∑∞xn
Exponential generating function
G
e
(
x
)
=
∑
n
=
0
∞
x
n
n
!
=
e
x
G_e(x) = \sum\limits_{n=0}^{\infty}\cfrac{x^n}{n!}=e^x
Ge(x)=n=0∑∞n!xn=ex
边栏推荐
- Embedded-c language-7
- The vscode code is automatically modified to a compliance code when it is formatted and saved
- BFS - topology sort
- Bloom filter [proposed by bloom in 1970; redis cache penetration solution]
- The second largest gay dating website in the world was exposed, and the status of programmers in 2022
- Valentine's day, send you a little red flower~
- Line by line explanation of yolox source code of anchor free series network (6) -- mixup data enhancement
- A. Berland Poker &1000【简单数学思维】
- Interviewer: why is the value nil not equal to nil?
- Win32: dump file analysis of heap corruption
猜你喜欢
Redis core technology and practice - learning notes (11): why not just string
AcWing 271. 杨老师的照相排列【多维DP】
How to install PHP on Ubuntu 20.04
SQL injection -day16
[combinatorics] generating function (summation property)
[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)
The third day of writing C language by Yabo people
Redis cache avalanche, penetration, breakdown
Computer graduation design PHP campus address book telephone number inquiry system
Redis on local access server
随机推荐
A. Berland Poker &1000【简单数学思维】
The vscode code is automatically modified to a compliance code when it is formatted and saved
Redis core technology and practice - learning notes (VIII) sentinel cluster: sentinel hung up
[combinatorics] generating function (positive integer splitting | basic model of positive integer splitting | disordered splitting with restrictions)
Redis cache avalanche, penetration, breakdown
Getting started with deops
Count the number of pixel values in the image
Valentine's day, send you a little red flower~
Classroom attendance system based on face recognition tkinter+openpyxl+face_ recognition
Postfix 技巧和故障排除命令
How do microservices aggregate API documents? This wave of operation is too good
On Data Mining
Use of unsafe class
English语法_名词 - 分类
SDNUOJ1015
SDNUOJ1015
Micro service component sentinel console call
Supervisor monitors gearman tasks
Website with JS doesn't work in IE9 until the Developer Tools is activated
TCP拥塞控制详解 | 3. 设计空间