当前位置:网站首页>[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
2022-07-03 18:12:00 【Programmer community】
List of articles
- One 、 Exponential generating function
- Two 、 Permutation number exponential generating function = General generating function of combinatorial number
- 3、 ... and 、 Example of exponential generating function
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
One 、 Exponential generating function
Of multiple sets Combinatorial number , Use Generating function Calculate ;
Of multiple sets Number of permutations , Use Exponential generating function Calculate ;
Sequence
{
a
n
}
\{ a_n \}
{ an} , The general formula is
a
n
a_n
an ,
{
a
n
}
\{ a_n \}
{ an} Of The general generating function is
G
(
x
)
=
∑
n
=
0
∞
a
n
x
n
G(x) = \sum\limits_{n=0}^{\infty}a_n x^n
G(x)=n=0∑∞anxn ,
{
a
n
}
\{ a_n \}
{ an} Of The exponential generating function is
G
e
(
x
)
=
∑
n
=
0
∞
a
n
x
n
n
!
G_e(x) = \sum\limits_{n=0}^{\infty}a_n \cfrac{x^n}{n!}
Ge(x)=n=0∑∞ann!xn
\ \ \ \,
* ( Key formula )
{
a
n
}
\{ a_n \}
{ an} Of Exponential generating function It is based on the general generating function Divided by
n
!
n!
n! ;
Two 、 Permutation number exponential generating function = General generating function of combinatorial number
Number of permutations :
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \cfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n! ,
n
n
n Of the elements
r
r
r Elements , Duplicate permutations are not allowed ;
Combinatorial number :
C
(
n
,
r
)
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \cfrac{n!}{r!(n-r)!}
C(n,r)=r!(n−r)!n! ,
n
n
n Of the elements
r
r
r Elements , Duplicate combinations are not allowed ;
The generating function corresponding to the combination number yes
G
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
G(x) = \sum\limits_{n=0}^{\infty}\dbinom{m}{n} x^n
G(x)=n=0∑∞(nm)xn , After convergence
(
1
+
x
)
n
(1+x)^n
(1+x)n
The generating function corresponding to the permutation number yes
G
(
x
)
=
∑
n
=
0
∞
P
(
m
,
n
)
x
n
G(x) = \sum\limits_{n=0}^{\infty}P(m, n) x^n
G(x)=n=0∑∞P(m,n)xn , according to
n
!
C
(
m
,
n
)
=
P
(
m
,
n
)
n! C(m,n) = P(m, n)
n!C(m,n)=P(m,n) , The generating function of the permutation , Each term is divided by
n
!
n!
n! , You can get the generating function of the corresponding combination number ;
The exponential generating function corresponding to the permutation count yes
G
e
(
x
)
=
∑
n
=
0
∞
P
(
m
,
n
)
x
n
n
!
G_e(x) = \sum\limits_{n=0}^{\infty}P(m, n) \cfrac{x^n}{n!}
Ge(x)=n=0∑∞P(m,n)n!xn , according to according to
C
(
m
,
n
)
=
P
(
m
,
n
)
n
!
C(m,n) =\cfrac{ P(m, n)}{n!}
C(m,n)=n!P(m,n) , It can be concluded as follows :
Exponential generating function of permutation count
=
=
= General generating function of combinatorial counting
3、 ... and 、 Example of exponential generating function
The sequence
b
n
=
1
b_n=1
bn=1 , seek
{
b
n
}
\{ b_n \}
{ bn} The exponential generating function of ;
The sequence is
{
1
,
1
,
1
,
⋯
}
\{1, 1 ,1 , \cdots\}
{ 1,1,1,⋯}
Ordinary generating functions
G
(
x
)
=
1
+
x
+
x
2
+
⋯
=
∑
n
=
0
∞
x
n
G(x) = 1 + x + x^2 + \cdots = \sum\limits_{n=0}^{\infty}x^n
G(x)=1+x+x2+⋯=n=0∑∞xn
Exponential generating function
G
e
(
x
)
=
∑
n
=
0
∞
x
n
n
!
=
e
x
G_e(x) = \sum\limits_{n=0}^{\infty}\cfrac{x^n}{n!}=e^x
Ge(x)=n=0∑∞n!xn=ex
边栏推荐
- Computer graduation design PHP campus address book telephone number inquiry system
- 聊聊支付流程的設計與實現邏輯
- Embedded-c language-7
- Solve the problem of inaccurate network traffic monitored by ZABBIX with SNMP
- How to expand the capacity of golang slice slice
- Gear2021 monthly update - December
- TCP拥塞控制详解 | 3. 设计空间
- (9) Opencv Canny edge detection
- [enumeration] annoying frogs always step on my rice fields: (who is the most hateful? (POJ hundred practice 2812)
- [combinatorics] generating function (example of using generating function to solve the number of solutions of indefinite equation)
猜你喜欢

基于人脸识别的课堂考勤系统 tkinter+openpyxl+face_recognition

Getting started with deops
![Lesson 13 of the Blue Bridge Cup -- tree array and line segment tree [exercise]](/img/da/0a282b4773fe3909d1e5e9d19f8549.jpg)
Lesson 13 of the Blue Bridge Cup -- tree array and line segment tree [exercise]

BFS - topology sort

Class exercises

PHP MySQL preprocessing statement

Market demand survey and marketing strategy analysis report of global and Chinese pet milk substitutes 2022-2028

Research Report on market demand and investment planning for the development of China's office chair industry, 2022-2028

Baiwen.com 7 days Internet of things smart home learning experience punch in the next day

(8) HS corner detection
随机推荐
小程序 多tab 多swiper + 每个tab分页
Redis cache avalanche, penetration, breakdown
【统信UOS】扫描仪设备管理驱动安装
win32:堆破壞的dump文件分析
How to draw non overlapping bubble chart in MATLAB
[combinatorics] generating function (generating function application scenario | using generating function to solve recursive equation)
Class exercises
OpenSSL的SSL/BIO_get_fd
Graduation summary
WebView module manages the application window interface to realize the logical control and management operation of multiple windows (Part 1)
[combinatorics] generating function (example of using generating function to solve the number of solutions of indefinite equation)
English語法_名詞 - 分類
Line by line explanation of yolox source code of anchor free series network (6) -- mixup data enhancement
Create a new file from templates with bash script - create new file from templates with bash script
PHP MySQL order by keyword
Investigation on the operation prospect of the global and Chinese Anti enkephalinase market and analysis report on the investment strategy of the 14th five year plan 2022-2028
On Data Mining
PHP MySQL Update
Supervisor monitors gearman tasks
Baiwen.com 7 days Internet of things smart home learning experience punch in the next day