当前位置:网站首页>[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
[combinatorics] exponential generating function (concept of exponential generating function | permutation number exponential generating function = combinatorial number ordinary generating function | e
2022-07-03 18:12:00 【Programmer community】
List of articles
- One 、 Exponential generating function
- Two 、 Permutation number exponential generating function = General generating function of combinatorial number
- 3、 ... and 、 Example of exponential generating function
Reference blog : Look in order
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
- 【 Combinatorial mathematics 】 Generating function ( Summary of nature | Important generating functions ) *
- 【 Combinatorial mathematics 】 Generating function ( Generate function examples | Given the general term formula, find the generating function | Given the generating function, find the general term formula )
- 【 Combinatorial mathematics 】 Generating function ( Generate function application scenarios | Solving recursive equations using generating functions )
- 【 Combinatorial mathematics 】 Generating function ( Use the generating function to solve multiple sets r Combinatorial number )
- 【 Combinatorial mathematics 】 Generating function ( Use generating function to solve the number of solutions of indefinite equation )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations )
- 【 Combinatorial mathematics 】 Generating function ( Examples of using generating functions to solve the number of solutions of indefinite equations 2 | Extended to integer solutions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | disorder | Orderly | Allow repetition | No repetition | Unordered and unrepeated splitting | Unordered repeated split )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Unordered non repeated split example )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Basic model of positive integer splitting | Disorderly splitting with restrictions )
- 【 Combinatorial mathematics 】 Generating function ( Positive integer split | Repeated ordered splitting | Do not repeat orderly splitting | Proof of the number of repeated ordered splitting schemes )
One 、 Exponential generating function
Of multiple sets Combinatorial number , Use Generating function Calculate ;
Of multiple sets Number of permutations , Use Exponential generating function Calculate ;
Sequence
{
a
n
}
\{ a_n \}
{ an} , The general formula is
a
n
a_n
an ,
{
a
n
}
\{ a_n \}
{ an} Of The general generating function is
G
(
x
)
=
∑
n
=
0
∞
a
n
x
n
G(x) = \sum\limits_{n=0}^{\infty}a_n x^n
G(x)=n=0∑∞anxn ,
{
a
n
}
\{ a_n \}
{ an} Of The exponential generating function is
G
e
(
x
)
=
∑
n
=
0
∞
a
n
x
n
n
!
G_e(x) = \sum\limits_{n=0}^{\infty}a_n \cfrac{x^n}{n!}
Ge(x)=n=0∑∞ann!xn
\ \ \ \,
* ( Key formula )
{
a
n
}
\{ a_n \}
{ an} Of Exponential generating function It is based on the general generating function Divided by
n
!
n!
n! ;
Two 、 Permutation number exponential generating function = General generating function of combinatorial number
Number of permutations :
P
(
n
,
r
)
=
n
!
(
n
−
r
)
!
P(n,r) = \cfrac{n!}{(n-r)!}
P(n,r)=(n−r)!n! ,
n
n
n Of the elements
r
r
r Elements , Duplicate permutations are not allowed ;
Combinatorial number :
C
(
n
,
r
)
=
n
!
r
!
(
n
−
r
)
!
C(n,r) = \cfrac{n!}{r!(n-r)!}
C(n,r)=r!(n−r)!n! ,
n
n
n Of the elements
r
r
r Elements , Duplicate combinations are not allowed ;
The generating function corresponding to the combination number yes
G
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
G(x) = \sum\limits_{n=0}^{\infty}\dbinom{m}{n} x^n
G(x)=n=0∑∞(nm)xn , After convergence
(
1
+
x
)
n
(1+x)^n
(1+x)n
The generating function corresponding to the permutation number yes
G
(
x
)
=
∑
n
=
0
∞
P
(
m
,
n
)
x
n
G(x) = \sum\limits_{n=0}^{\infty}P(m, n) x^n
G(x)=n=0∑∞P(m,n)xn , according to
n
!
C
(
m
,
n
)
=
P
(
m
,
n
)
n! C(m,n) = P(m, n)
n!C(m,n)=P(m,n) , The generating function of the permutation , Each term is divided by
n
!
n!
n! , You can get the generating function of the corresponding combination number ;
The exponential generating function corresponding to the permutation count yes
G
e
(
x
)
=
∑
n
=
0
∞
P
(
m
,
n
)
x
n
n
!
G_e(x) = \sum\limits_{n=0}^{\infty}P(m, n) \cfrac{x^n}{n!}
Ge(x)=n=0∑∞P(m,n)n!xn , according to according to
C
(
m
,
n
)
=
P
(
m
,
n
)
n
!
C(m,n) =\cfrac{ P(m, n)}{n!}
C(m,n)=n!P(m,n) , It can be concluded as follows :
Exponential generating function of permutation count
=
=
= General generating function of combinatorial counting
3、 ... and 、 Example of exponential generating function
The sequence
b
n
=
1
b_n=1
bn=1 , seek
{
b
n
}
\{ b_n \}
{ bn} The exponential generating function of ;
The sequence is
{
1
,
1
,
1
,
⋯
}
\{1, 1 ,1 , \cdots\}
{ 1,1,1,⋯}
Ordinary generating functions
G
(
x
)
=
1
+
x
+
x
2
+
⋯
=
∑
n
=
0
∞
x
n
G(x) = 1 + x + x^2 + \cdots = \sum\limits_{n=0}^{\infty}x^n
G(x)=1+x+x2+⋯=n=0∑∞xn
Exponential generating function
G
e
(
x
)
=
∑
n
=
0
∞
x
n
n
!
=
e
x
G_e(x) = \sum\limits_{n=0}^{\infty}\cfrac{x^n}{n!}=e^x
Ge(x)=n=0∑∞n!xn=ex
边栏推荐
- How to deploy applications on kubernetes cluster
- 统计图像中各像素值的数量
- A. Berland Poker &1000【简单数学思维】
- The second largest gay dating website in the world was exposed, and the status of programmers in 2022
- Count the number of pixel values in the image
- [combinatorics] generating function (use generating function to solve the combination number of multiple sets R)
- Discussion sur la logique de conception et de mise en oeuvre du processus de paiement
- Unsafe类的使用
- [combinatorics] generating function (use generating function to solve the number of solutions of indefinite equation)
- [combinatorics] generating function (example of using generating function to solve the number of solutions of indefinite equation)
猜你喜欢

Baiwen.com 7 days Internet of things smart home learning experience punch in the next day

MySQL has been stopped in the configuration interface during installation
![[combinatorics] generating function (summation property)](/img/74/e6ef8ee69ed07d62df9f213c015f2c.jpg)
[combinatorics] generating function (summation property)

Classroom attendance system based on face recognition tkinter+openpyxl+face_ recognition

How to draw non overlapping bubble chart in MATLAB

The second largest gay dating website in the world was exposed, and the status of programmers in 2022

微服务组件Sentinel控制台调用

How to expand the capacity of golang slice slice

STM32 realizes 74HC595 control

Redis on local access server
随机推荐
SSL / bio pour OpenSSL Get FD
Basic grammar of interview (Part 2)
Prototype inheritance..
Mature port AI ceaspectus leads the world in the application of AI in terminals, CIMC Feitong advanced products go global, smart terminals, intelligent ports, intelligent terminals
Managing multiple selections with MVVM - managing multiple selections with MVVM
List的stream中Long对象与long判等问题记录
Analysis report on production and marketing demand and investment forecast of China's PVC industry from 2021 to 2026
AcWing 271. Teacher Yang's photographic arrangement [multidimensional DP]
Closure and closure function
Bidding procurement scheme management of Oracle project management system
How to deploy applications on kubernetes cluster
Kotlin的协程:上下文
Ssl/bio of OpenSSL_ get_ fd
supervisor监控Gearman任务
Introduction to PHP MySQL
聊聊支付流程的設計與實現邏輯
Line by line explanation of yolox source code of anchor free series network (6) -- mixup data enhancement
Talk about the design and implementation logic of payment process
PHP MySQL preprocessing statement
How to install PHP on Ubuntu 20.04