当前位置:网站首页>Data analysis from the perspective of control theory
Data analysis from the perspective of control theory
2022-07-07 02:53:00 【Jade Wind chant】
Data analysis from the perspective of control theory
As the title , Talk about my cognition of mathematical and physical models . This article is also for 1024 medal , An article deliberately rushed , No manuscript saved , Just briefly express your ideas . If you have any questions, welcome to exchange and discuss .
My professional direction and control are inseparable , After junior year , Learn modern control theory 、 Testing Technology 、 After the principle of computer control , I really realized that the mathematical model should be raised to a dynamic system . Data analysis is actually the estimation of system state . This is the new understanding I have had during this period of time .
When doing robot control , There will inevitably be a problem —— Navigation . Then what is navigation ? The task of navigation covers three parts :
- I ( robot ) Where is the ?
- I ( robot ) Where are you going? ?
- I ( robot ) How to get there ?
Our work revolves around these three issues . First, the first question , location . How can we achieve positioning —— Where is the robot ?
The positioning of robot is based on its perception . Perception comes from detectors , It usually includes optical sensors such as cameras 、 Laser radar 、 Ultrasonic ranging and so on . I temporarily call the data obtained by these sensors observation data . You've seen me Statistical pattern recognition series learning notes My friends must know Bayesian prior distribution and posterior distribution . That is, how to get the current posture of the robot in the world coordinate system from the observation data ? Now I quote directly from my Statistical pattern recognition learning notes ( Two ) In the words of .
How do we observe data x x x To estimate the current state of the robot ?
In short , We hope that through the observation data x x x To infer the state ( And their probability distributions ). therefore , We say the estimation of robot state , Is known observation data x x x Under the condition of , Calculate the conditional probability distribution of the state :
p ( ϖ i ∣ x ) p(\varpi_i|x) p(ϖi∣x)
In order to have a better connection with the previous article , The expression used is ϖ i \varpi_i ϖi and x x x . And the above formula is also called Posterior probability . Using Bayesian formula , A posteriori probability can also be expressed as :
p ( ϖ i ∣ x ) = p ( x ∣ ϖ i ) p ( ϖ i ) p ( x ) p(\varpi_i|x)=\frac{p(x|\varpi_i)p(\varpi_i)}{p(x)} p(ϖi∣x)=p(x)p(x∣ϖi)p(ϖi)
p ( x ∣ ϖ i ) p(x|\varpi_i) p(x∣ϖi) It's called likelihood , p ( ϖ i ) p(\varpi_i) p(ϖi) It's called a priori . Solving the maximum a posteriori probability is equivalent to the product of maximum likelihood and a priori .
The significance of a priori probability and a posteriori probability is discussed too much in the notes , No more details here . actually , If state estimation is strongly combined with classification problems , Then each state corresponds to a category . This is the source of my inspiration .
In the chapter of modern control theory about system controllability and observability , There is a sentence that inspires me a lot ,“ Input affects the internal state quantity of the system , The state quantity determines the output of the system .”
In computer control theory , We often study discrete systems . Because computers process digital signals , It is discrete in time and amplitude . We know that the physical meaning of differential equations is actually the law of motion of the system . Differential equations are mathematical models of continuous signals , The difference equation is the mathematical model of discrete signal . Discrete signals can be sampled from continuous systems , Problems related to sampling points , I can easily rise to the application problem . For example, a small shop needs to purchase goods every month , Input is the purchase quantity , Output is profit . And user preferences , Regional factors are often intermediate variables in this input and output process . I try to find a way to describe quantitatively , Although there is no further study this week , But I believe this problem can be solved next Monday and Tuesday .
I am now , Yes 、 Complex domain 、 frequency domain 、 State space has a new understanding , I believe my control system will go a long way . Thank you for meeting these lovely teachers this semester , I also found that my efforts gradually began to pay off .
边栏推荐
猜你喜欢

电气工程及其自动化

软件测试——Jmeter接口测试之常用断言

Left value, right value

用全连接+softmax对图片的feature进行分类

How to write test cases for test coupons?

wireshark安装

Summary of basic debugging steps of S120 driver
![[secretly kill little partner pytorch20 days] - [Day1] - [example of structured data modeling process]](/img/f0/79e7915ba3ef32aa21c4a1d5f486bd.jpg)
[secretly kill little partner pytorch20 days] - [Day1] - [example of structured data modeling process]

运维管理系统有哪些特色

从零安装Redis
随机推荐
安全交付工程师
巴比特 | 元宇宙每日必读:IP授权是NFT的破圈之路吗?它的难点在哪里?Holder该如何选择合作平台?...
Redis getting started complete tutorial: replication topology
6-6 vulnerability exploitation SSH security defense
What management points should be paid attention to when implementing MES management system
Kysl Haikang camera 8247 H9 ISAPI test
c语言(字符串)如何把字符串中某个指定的字符删除?
Code line breaking problem of untiy text box
Redis入门完整教程:客户端管理
A complete tutorial for getting started with redis: AOF persistence
Safety delivery engineer
Convert widerperson dataset to Yolo format
【软件测试】最全面试问题和回答,全文背熟不拿下offer算我输
Redis入门完整教程:复制原理
Here comes a white paper to uncover the technology behind Clickhouse, a node with 10000 bytes!
Redis getting started complete tutorial: replication configuration
Statistics of radar data in nuscenes data set
Planning and design of double click hot standby layer 2 network based on ENSP firewall
测试优惠券要怎么写测试用例?
Lombok makes the pit of ⽤ @data and @builder at the same time