当前位置:网站首页>[System Design and Implementation] Flink-based distracted driving prediction and data analysis system
[System Design and Implementation] Flink-based distracted driving prediction and data analysis system
2022-08-02 15:29:00 【Hongyao】
目录
基于flinkForecast of distracted driving and data analysis system(GitHubWarehouse click here)
项目简介
通过flinkReal-time identification and random forest model driver whether the user is in a state of alert,And further data statistics and analysis,To save the results of the analysis inhbase,并通过WebsocketTo provide customers with real-time analysis results. (The system try to give a few years ago,Model the truth quite pull)
项目技术栈
后端技术栈:Flink,Flume,kafka,HBase,Mysql,Springboot
前后端通信协议:websocket(stomp),http(前端axios)
前端技术栈:Vue,Echart,ElementUI
机器学习:sklearn,pmml
项目组成

The project has created three module:
StayAlertWeb模块:系统的Web客户端,Used to display real-time statistics and query users of real-time statistics.
StayAlertAPI模块:该模块是一个Springboot程序,Used to provide for persistent data and real-time statisticsapi接口.Simulation characteristic data is through the moduleapi转发到flume和kafka中间件,And then to predict analysis program for processing.
StayAlertFlink模块:This module is responsible for according to the characteristics of simulation data to predict the user's alert,Then combined with the user's personal information to users' personal data analysis and data analysis of global.该模块 Send the results to the message middleware and persisting data tohbase.StayAlertAPI模块可以从KafkaThe message queue to obtain real-time data,Also can be directlyhbaseObtain the data persistence.
数据库:本次项目使用MysqlKeep the user's personal information,并使用HBaseThe statistical results of data persistence.

业务流程:
- Simulation program toSpringboot编写的apiCharacteristics of user application sends data.
- springbootCharacteristics of the data byFlume和KafkaForward the message middleware toFlink预测分析程序,Formation of the flow.
- 通过connectOperation incorporating prediction results and user information data.
- Flow load training in goodPMMLRandom forests model to predict.
- 程序从MysqlRegularly read user information data in,Through radio sends data to the trunk calculation flow in the form of
- Program will be persisted to the statistical resultsHbase中,然后发送到Flume和KafkaMessage middleware in waiting forSpringbootProgram gets pushed to users and.
- 根据用户id分组,Users' personal data
- Using the window operation and data aggregation function global statistics
- SpringbootTo the user the results
- From the message middleware to obtain real-time data
- 从Hbase和MysqlThe database access to persistent data
- Web客户端先向SpringbootTo the initial page request a persistent data show,然后创建Websocket连接,To obtain the statistical results of real time
界面

相关下载
原始数据集
Distractions classification model
Model after downloading on/StayAlertSystem/StayAlertFlink/src/main/resources目录下.
| 名称 | 说明 | 准确率 | 模型大小 |
|---|---|---|---|
| StayAlertRFC.pmml | 使用88An estimator | 87.56% | 200MB |
| LightStayAlertRFC.pmml | 使用20An estimator | 84.46% | 45MB |
百度云 提取码:qz4x
操作文档
数据集说明
本数据集来自KaggleA competition,Data set provided by the ford,The data shows that many groups“试验”的结果,Each representative experiment lasted about2Minutes of driving data,The data on the road or in a driving simulator per100Ms record at a time,The characteristics of the data fields including the driver's physiological indexes in the process of the driving,Some environmental indicators and vehicle,May for some reasons,These indicators of the actual name and unit of measure in this task does not disclose.
| 字段名称 | 字段解释 |
|---|---|
| TrialID | 大约2Minutes of continuous data of each cycle has a unique testID.例如,前1210Observation on behalf of every100msThe continuous observation,Therefore has the same testID |
| ObsNum | This is a testIDIn increasing Numbers in sequence |
| IsAlert | If the driver is alarm for1,否则为0 |
| P1-P8 | Physiological data |
| E1-E11 | On behalf of the environmental data |
| V1-V11 | According to vehicle data |
边栏推荐
猜你喜欢

MATLAB绘图函数plot详解

Mysql连接错误解决

Win10上帝模式干嘛的?Win10怎么开启上帝模式?

In-depth understanding of Golang's Map
![[STM32 Learning 1] Basic knowledge and concepts are clear](/img/1c/7c4fd2d835e15ca13517c6d97e9b3a.png)
[STM32 Learning 1] Basic knowledge and concepts are clear

总结计算机网络超全面试题

yolov5官方代码解读——前向传播

cmake配置libtorch报错Failed to compute shorthash for libnvrtc.so

MATLAB绘图函数ezplot入门详解

What is Win10 God Mode for?How to enable God Mode in Windows 10?
随机推荐
vscode镜像
模板系列-并查集
Mysql连接错误解决
DP4344兼容CS4344-DA转换器
How to set the win10 taskbar does not merge icons
基于最小二乘法的线性回归分析方程中系数的估计
Use tencent cloud builds a personal blog
Win11系统找不到dll文件怎么修复
2021-10-14
FP7195降压恒流PWM转模拟调光零压差大功率驱动方案原理图
Win11没有本地用户和组怎么解决
推开机电的大门《电路》(三):说说不一样的电阻与电导
一篇文章彻底理解Redis的持久化:RDB、AOF
FP5207电池升压 5V9V12V24V36V42V大功率方案
FP7195转模拟调光技术解决智能家居调光频闪和电感噪音的原理
FP7195芯片PWM转模拟调光至0.1%低亮度时恒流一致性的控制原理
How to solve Win11 without local users and groups
MATLAB绘图函数plot详解
DP4301无线收发SUB-1G芯片兼容CC1101智能家居
TCP三次握手、四次挥手