当前位置:网站首页>Prime partner of Huawei machine test questions
Prime partner of Huawei machine test questions
2022-07-07 06:51:00 【Sunny day m rainy day】
Maximum matching of bipartite graph ( hungarian algorithm ): Prime mate
The top
Title Description
If sum of the two positive integers is prime , Then these two positive integers are called “ Prime mate ”, Such as 2 and 5、6 and 13, They can be applied to communication encryption . Now the password society asks you to design a program , From what already exists N(N For the even ) Select several pairs of positive integers to form “ Prime mate ”, There are many options , For example, there are 4 A positive integer :2,5,6,13, If you will 5 and 6 You can only get one group in a group “ Prime mate ”, And will be 2 and 5、6 and 13 Grouping will result in two groups “ Prime mate ”, Energy composition “ Prime mate ” The most common scheme is called “ Best solution ”, Of course, the password society wants you to find “ Best solution ”.
Input
There is a positive even number N(N≤100), Represents the number of natural numbers to be selected . Specific figures are given later , The scope is [2,30000].
Output
Output an integer K, It means what you get “ Best solution ” form “ Prime mate ” The logarithmic .
Input description
1、 Enter a positive even number n
2 、 Input n It's an integer
Output description
Obtained “ Best solution ” form “ Prime mate ” The logarithmic .
Input
4
2 5 6 13
Output
2
Ideas
Consider using graph theory to model this problem .100 The number is 100 A little bit , If the sum of these two numbers is prime , Connect an edge between these two numbers . after , We should choose as many edges as possible , Require these edges not to share endpoints . The value range of each number is [2,30000]. Prime except 2 It's even , Others are odd numbers —— And now it can't happen 2 了 , So we only consider odd primes .2 The sum of numbers is odd , Only an odd number + even numbers . therefore , We divide these numbers into 2 Pile up —— Odd and even , Get bipartite graph . Then among them , And are prime , Connect an edge , Then match . The maximum match of bipartite graph , There is a much simpler algorithm , hungarian algorithm .
Relevant concepts
Bipartite graph
A bipartite graph is actually a graph in which all points can be divided into two groups , There are no edges in the same group , All edges span two groups . Accurately speaking : Divide the vertex of a graph into two disjoint sets U and V , And make each side connected separately U 、V The summit of , If there is such a division , This graph is called a bipartite graph .
Another equivalent definition of bipartite graph is : It doesn't contain 「 Rings with odd edges 」 Graph .
matching
Bipartite graph matching is the set of edges, in which any two edges have no common vertices . We define :
Match side 、 Match points 、 Unmatched edges 、 Mismatches .
Pictured : if 1—2 Connected to a ,5—4 Connected to a ,7—6 Connected to a . Obviously 1—2 edge 、5—4 edge 、7—6 The edge is a matching edge ,1、2、4、5、6、7 For matching points . The rest are unmatched points and unmatched edges .
The biggest match
The matching with the largest number of edges in the matching of a graph is the maximum matching of this graph . As shown in the figure above, the maximum match is :

Obviously, there may be more than one maximum match .
Perfect match
If there is a match in a graph , All vertices are matching points , Then it's a perfect match . The above pictures are perfect matches . obviously , Perfect match must be the biggest match ( Any point of perfect match has been matched , Adding a new matching edge will conflict with the existing matching edge ). But not every graph has a perfect match .
Alternate paths
Starting from an unmatched point , Pass through the unmatched edges in turn 、 Match side 、 Unmatched edges …… The formed path is called alternate path . Pictured 2—>1—>8—>7 It is an alternate path .
Augmentation path
Starting from an unmatched point , Take alternate paths , If you reach another unmatched point , Then this alternate path is called augmented path (agumenting path). Pictured 1—>2—>3—>6—>7—>8 That is, an expansion path .
Code reference
import java.util.Scanner;
import java.util.ArrayList;
public class Main{
static int max=0;
public static void main(String[] args){
// The standard input
Scanner sc=new Scanner(System.in);
while(sc.hasNext()){
// Enter positive and even numbers
int n=sc.nextInt();
// Used to record input n It's an integer
int[] arr=new int[n];
// Used to store all odd numbers
ArrayList<Integer> odds=new ArrayList<>();
// Used to store all even numbers
ArrayList<Integer> evens=new ArrayList<>();
for(int i=0;i<n;i++){
arr[i]=sc.nextInt();
// Add odd numbers to odds
if(arr[i]%2==1){
odds.add(arr[i]);
}
// Add even numbers to evens
if(arr[i]%2==0){
evens.add(arr[i]);
}
}
// Subscripts correspond to even subscripts that have been matched , The value corresponds to this even number of partners
int[] matcheven=new int[evens.size()];
// Record the number of partners
int count=0;
for(int j=0;j<odds.size();j++){
// Used to mark whether the corresponding even number has been searched
boolean[] v=new boolean[evens.size()];
// If match up , Then count and add 1
if(find(odds.get(j),matcheven,evens,v)){
count++;
}
}
System.out.println(count);
}
}
// Judge the odd number x Can you find a partner
private static boolean find(int x,int[] matcheven,ArrayList<Integer> evens,boolean[] v){
for(int i=0;i<evens.size();i++){
// This location has not been visited even , And can communicate with x Form prime partners
if(isPrime(x+evens.get(i))&&v[i]==false){
v[i]=true;
/* If i Even number has no partner , Then with x Form a partner , If you already have a partner , And this partner can find a new partner , Then give your original partner to others , Oneself and x Form a partner */
if(matcheven[i]==0||find(matcheven[i],matcheven,evens,v)){
matcheven[i]=x;
return true;
}
}
}
return false;
}
// Judge x Is it a prime
private static boolean isPrime(int x){
if(x==1) return false;
// If it can be 2 Root number x to be divisible by , Then it must not be prime
for(int i=2;i<=(int)Math.sqrt(x);i++){
if(x%i==0){
return false;
}
}
return true;
}
}
边栏推荐
- 品牌电商如何逆势增长?在这里预见未来!
- String (explanation)
- 请教一个问题,flink oracle cdc,读取一个没有更新操作的表,隔十几秒就重复读取全量数据
- 中英文说明书丨ProSci LAG-3 重组蛋白
- mysql查看bin log 并恢复数据
- What books can greatly improve programming ideas and abilities?
- Jetpack Compose 远不止是一个UI框架这么简单~
- DB2获取表信息异常:Caused by: com.ibm.db2.jcc.am.SqlException: [jcc][t4][1065][12306][4.25.13]
- 健身房如何提高竞争力?
- Can't you really do it when you are 35 years old?
猜你喜欢

Cloudcompare point pair selection

途家、木鸟、美团……民宿暑期战事将起

Go straight to the 2022ecdc fluorite cloud Developer Conference: work with thousands of industries to accelerate intelligent upgrading

Linear algebra (1)

Redis (I) -- getting to know redis for the first time

Mysql---- import and export & View & Index & execution plan

循环肿瘤细胞——Abnova 解决方案来啦

LM11丨重构K线构建择时交易策略

Pinduoduo lost the lawsuit: "bargain for free" infringed the right to know but did not constitute fraud, and was sentenced to pay 400 yuan

MySQL的安装
随机推荐
数据资产管理与数据安全国内外最新趋势
Redhat5 installing vmware tools under virtual machine
Install mongodb database
dolphinscheduler3. X local startup
MySQL installation
mysql查看bin log 并恢复数据
分布式id解决方案
一文带你了解静态路由的特点、目的及配置基本功能示例
JESD204B时钟网络
基于JS的迷宫小游戏
How to install swoole under window
DHCP路由器工作原理
2018年江苏省职业院校技能大赛高职组“信息安全管理与评估”赛项任务书
unity3d学习笔记
7天零基础能考证HCIA吗?华为认证系统学习路线分享
地质学类比较有名的外文期刊有哪些?
MOS管参数μCox得到的一种方法
怎样查找某个外文期刊的文献?
libcurl返回curlcode说明
LM11丨重构K线构建择时交易策略