当前位置:网站首页>Pytoch foundation - (2) mathematical operation of tensor
Pytoch foundation - (2) mathematical operation of tensor
2022-07-06 03:27:00 【Up and down black】
Catalog
Two 、 Maximum 、 minimum value 、 mean value 、 The absolute value 、 Sort
3、 ... and 、tensor The index of
One 、 Basic operation
import torch
x = torch.tensor([2, 2, 2], dtype=torch.float32)
y = torch.tensor([3, 4, 5], dtype=torch.float32)
- Add
out1 = torch.add(x, y)
print(out1)
- Subtraction
out2 = torch.sub(x, y)
print(out2)
- division
out3 = torch.div(x, y)
print(out3)
- Multiplication
out4 = torch.mul(x, y)
print(out4)
- Matrix multiplication
a = torch.rand((2, 5))
b = torch.rand((5, 3))
out5 = torch.mm(a, b)
print(out5)
print(out5.shape)
- Batch matrix multiplication
batch = 16
c1 = 5
c2 = 10
c3 = 20
x1 = torch.rand(batch, c1, c2) # 16*5*10
x2 = torch.rand(batch, c2, c3) # 16*10*20
out6 = torch.bmm(x1, x2) # 16*5*20
print(out6.shape)
- Index
out7 = x.pow(3)
print(out7)
- Matrix index
x = torch.tensor([[1, 1], [1, 1]]) # (2*2) The number of rows and columns must be the same
out8 = x.matrix_power(2)
print(out8) # 2*2
- broadcasting
x1 = torch.rand((1, 3))
x2 = torch.rand((3, 3))
out9 = x1 -x2
print(out9)
Two 、 Maximum 、 minimum value 、 mean value 、 The absolute value 、 Sort
import torch
x = torch.tensor([[-1, 2, 3], [4, 5, 6]], dtype=torch.float32)
y = torch.tensor([[1, 1, 2], [0, 10, 9]], dtype=torch.float32)
- Maximum 、 minimum value 、 mean value
values, indice = torch.max(x, dim=0) # dim=0 The column ,1 Said line
print(values) # Value of maximum value
print(indice) # Index of maximum value
values, indice = torch.min(x, dim=0) # dim=0 The column ,1 Said line
print(values) # The minimum value
print(indice) # Index of minimum value
values, indice = torch.mean(x, dim=0)
print(values)
print(indice)
# Find the maximum 、 Index of minimum value
out1 = torch.argmax(x, dim=0)
out2 = torch.argmin(x, dim=0)
- The absolute value
out = torch.abs(x)
print(out)
- Sort
values, indice = torch.sort(x, dim=1, descending=False) # descending=False Expressing ascending order
print(values)
print(indice)
3、 ... and 、tensor The index of
- Simple operation
x = torch.tensor([1, 4, 5, 6, 0, 8, 6, 1, 4, 5])
print(x[0]) # First element
print(x[1: 6]) # Output No 2 One to the first 6 Elements
x = torch.randn((3, 10)) # size 3x10
print(x[0]) # Output No 1 All numbers of rows , size 1x10
print(x[0, :]) # size 1x10
print(x[:, 0]) # Output No 1 All the numbers in the column , size 10x1
x = torch.randn((4, 10))
rows = [1, 3]
colums = [2, 9]
print(x[rows, colums]) # (2, 3) (4, 10)
- Conditional
x = torch.tensor([1, 4, 5, 6, 0, 8, 6, 1, 4, 5])
print(torch.where(x > 5, x, x/2)) # x>5 Time output x, Otherwise output x/2
- other
print(x.unique()) # Output non repeating elements
print(x.numel()) # Output x The number of elements in
边栏推荐
- Deno介绍
- JS music online playback plug-in vsplayaudio js
- Leetcode problem solving -- 108 Convert an ordered array into a binary search tree
- jsscript
- 2.2 fonctionnement stm32 GPIO
- 手写数据库客户端
- 深入探究指针及指针类型
- Résumé des méthodes de reconnaissance des caractères ocr
- Advanced learning of MySQL -- Fundamentals -- isolation level of transactions
- Pytorch基础——(2)张量(tensor)的数学运算
猜你喜欢
2022工作中遇到的问题四
蓝色样式商城网站页脚代码
Precautions for single chip microcomputer anti reverse connection circuit
遥感图像超分辨重建综述
1、工程新建
Selenium share
【SLAM】lidar-camera外参标定(港大MarsLab)无需二维码标定板
Overview of OCR character recognition methods
Linear regression and logistic regression
Safety science to | travel, you must read a guide
随机推荐
Map sorts according to the key value (ascending plus descending)
Pytorch基础——(1)张量(tensor)的初始化
BUAA喜鹊筑巢
Svg drag point crop image JS effect
Canvas cut blocks game code
SAP ALV cell level set color
ArabellaCPC 2019(补题)
2.2 STM32 GPIO操作
. Net 6 and Net core learning notes: Important issues of net core
施努卡:3d视觉检测应用行业 机器视觉3d检测
Problems encountered in 2022 work IV
C language judgment, ternary operation and switch statement usage
Getting started with applet cloud development - getting user search content
The next industry outlet: NFT digital collection, is it an opportunity or a foam?
指针笔试题~走近大厂
Linear regression and logistic regression
Item 10: Prefer scoped enums to unscoped enums.
3.1 rtthread 串口设备(V1)详解
Inherit day01
给新人工程师组员的建议