当前位置:网站首页>Pytoch foundation - (2) mathematical operation of tensor
Pytoch foundation - (2) mathematical operation of tensor
2022-07-06 03:27:00 【Up and down black】
Catalog
Two 、 Maximum 、 minimum value 、 mean value 、 The absolute value 、 Sort
3、 ... and 、tensor The index of
One 、 Basic operation
import torch
x = torch.tensor([2, 2, 2], dtype=torch.float32)
y = torch.tensor([3, 4, 5], dtype=torch.float32)- Add
out1 = torch.add(x, y)
print(out1)- Subtraction
out2 = torch.sub(x, y)
print(out2)- division
out3 = torch.div(x, y)
print(out3)- Multiplication
out4 = torch.mul(x, y)
print(out4)- Matrix multiplication
a = torch.rand((2, 5))
b = torch.rand((5, 3))
out5 = torch.mm(a, b)
print(out5)
print(out5.shape)- Batch matrix multiplication
batch = 16
c1 = 5
c2 = 10
c3 = 20
x1 = torch.rand(batch, c1, c2) # 16*5*10
x2 = torch.rand(batch, c2, c3) # 16*10*20
out6 = torch.bmm(x1, x2) # 16*5*20
print(out6.shape)- Index
out7 = x.pow(3)
print(out7)- Matrix index
x = torch.tensor([[1, 1], [1, 1]]) # (2*2) The number of rows and columns must be the same
out8 = x.matrix_power(2)
print(out8) # 2*2- broadcasting
x1 = torch.rand((1, 3))
x2 = torch.rand((3, 3))
out9 = x1 -x2
print(out9)Two 、 Maximum 、 minimum value 、 mean value 、 The absolute value 、 Sort
import torch
x = torch.tensor([[-1, 2, 3], [4, 5, 6]], dtype=torch.float32)
y = torch.tensor([[1, 1, 2], [0, 10, 9]], dtype=torch.float32)- Maximum 、 minimum value 、 mean value
values, indice = torch.max(x, dim=0) # dim=0 The column ,1 Said line
print(values) # Value of maximum value
print(indice) # Index of maximum value
values, indice = torch.min(x, dim=0) # dim=0 The column ,1 Said line
print(values) # The minimum value
print(indice) # Index of minimum value
values, indice = torch.mean(x, dim=0)
print(values)
print(indice)# Find the maximum 、 Index of minimum value
out1 = torch.argmax(x, dim=0)
out2 = torch.argmin(x, dim=0)- The absolute value
out = torch.abs(x)
print(out)- Sort
values, indice = torch.sort(x, dim=1, descending=False) # descending=False Expressing ascending order
print(values)
print(indice)3、 ... and 、tensor The index of
- Simple operation
x = torch.tensor([1, 4, 5, 6, 0, 8, 6, 1, 4, 5])
print(x[0]) # First element
print(x[1: 6]) # Output No 2 One to the first 6 Elements
x = torch.randn((3, 10)) # size 3x10
print(x[0]) # Output No 1 All numbers of rows , size 1x10
print(x[0, :]) # size 1x10
print(x[:, 0]) # Output No 1 All the numbers in the column , size 10x1
x = torch.randn((4, 10))
rows = [1, 3]
colums = [2, 9]
print(x[rows, colums]) # (2, 3) (4, 10)- Conditional
x = torch.tensor([1, 4, 5, 6, 0, 8, 6, 1, 4, 5])
print(torch.where(x > 5, x, x/2)) # x>5 Time output x, Otherwise output x/2- other
print(x.unique()) # Output non repeating elements
print(x.numel()) # Output x The number of elements in 边栏推荐
- Map sorts according to the key value (ascending plus descending)
- Canvas cut blocks game code
- ASU & OSU | model based regularized off-line meta reinforcement learning
- Distributed service framework dobbo
- An article about liquid template engine
- Pytorch基础——(1)张量(tensor)的初始化
- SD卡報錯“error -110 whilst initialising SD card
- 施努卡:视觉定位系统 视觉定位系统的工作原理
- 适合程序员学习的国外网站推荐
- Résumé des méthodes de reconnaissance des caractères ocr
猜你喜欢

Precautions for single chip microcomputer anti reverse connection circuit

How to choose PLC and MCU?

BUAA喜鹊筑巢

Idea push rejected solution

Research on cooperative control of industrial robots

Explore pointers and pointer types in depth

Four logs of MySQL server layer

Tidb ecological tools (backup, migration, import / export) collation

给新人工程师组员的建议

canvas切积木小游戏代码
随机推荐
The real machine cannot access the shooting range of the virtual machine, and the real machine cannot Ping the virtual machine
Redis cache breakdown, cache penetration, cache avalanche
Map sorts according to the key value (ascending plus descending)
Canvas cut blocks game code
Brush questions in summer -day3
Résumé des méthodes de reconnaissance des caractères ocr
暑期刷题-Day3
深入刨析的指针(题解)
js凡客banner轮播图js特效
Pointer for in-depth analysis (problem solution)
Microsoft Research, UIUC & Google research | antagonistic training actor critic based on offline training reinforcement learning
NR modulation 1
Mysql database operation
电机控制反Park变换和反Clarke变换公式推导
Leetcode problem solving -- 108 Convert an ordered array into a binary search tree
Suggestions for new engineer team members
Advanced learning of MySQL -- Fundamentals -- isolation level of transactions
Research on cooperative control of industrial robots
SAP ALV color code corresponding color (finishing)
[slam] lidar camera external parameter calibration (Hong Kong University marslab) does not need a QR code calibration board