当前位置:网站首页>20220701 Barbalat引理证明
20220701 Barbalat引理证明
2022-07-04 08:47:00 【能吃辣吗】
(Barbalat 引理)
如果可微函数 f ( t ) f(t) f(t), 当 t → ∞ t \rightarrow \infty t→∞ 时存在有限极限, 且 f ˙ ( t ) \dot{f}(t) f˙(t) 一致连续, 那么当 t → ∞ t \rightarrow \infty t→∞ 时, f ˙ ( t ) → 0 \dot{f}(t) \rightarrow 0 f˙(t)→0。
证明(反证法):
假设当 t → ∞ t \rightarrow \infty t→∞ 时, f ˙ ( t ) → 0 \dot{f}(t) \rightarrow 0 f˙(t)→0 不成立,那么存在一个递增无穷序列 { t n } n ∈ N \{t_n\}_{n\in\mathbb{N}} { tn}n∈N 使得(1)当 n → ∞ n \rightarrow \infty n→∞ 有 t n → ∞ t_n \rightarrow \infty tn→∞ ;(2) ∣ f ˙ ( t n ) ∣ ⩾ ϵ > 0 |\dot{f}(t_n) | \geqslant \epsilon>0 ∣f˙(tn)∣⩾ϵ>0 对于所有 { t n } \{t_n\} { tn}。
考虑 f ˙ ( t ) \dot{f}(t) f˙(t) 的一致连续性,根据 ϵ − δ \epsilon-\delta ϵ−δ 理论,存在某个 ϵ > 0 \epsilon>0 ϵ>0 ,使得对于所有 n ∈ N n\in\mathbb{N} n∈N 和 所有 t ∈ R t \in \mathbb{R} t∈R,当
∣ t n − t ∣ ⩽ δ |t_n -t|\leqslant\delta ∣tn−t∣⩽δ则有 ∣ f ˙ ( t n ) − f ˙ ( t ) ∣ ≤ ε 2 \left|\dot{f}\left(t_{n}\right)-\dot{f}(t)\right| \leq \frac{\varepsilon}{2} ∣∣∣f˙(tn)−f˙(t)∣∣∣≤2ε
因此,对于所有 t ∈ [ t n , t n + δ ] t\in[t_n,t_n+\delta] t∈[tn,tn+δ],和所有 n ∈ N n\in\mathbb{N} n∈N,有 ∣ f ˙ ( t ) ∣ = ∣ f ˙ ( t n ) − ( f ˙ ( t n ) − f ˙ ( t ) ) ∣ ⩾ ∣ f ˙ ( t n ) ∣ − ∣ f ˙ ( t n ) − f ˙ ( t ) ∣ ⩾ ε − ε 2 = ε 2 \begin{aligned} |\dot{f}(t)| =\left|\dot{f}\left(t_{n}\right)-\left(\dot{f}\left(t_{n}\right)-\dot{f}(t)\right)\right| \geqslant \left|\dot{f}\left(t_{n}\right)\right|-\left|\dot{f}\left(t_{n}\right)-\dot{f}(t)\right| \geqslant \varepsilon-\frac{\varepsilon}{2}=\frac{\varepsilon}{2} \end{aligned} ∣f˙(t)∣=∣∣∣f˙(tn)−(f˙(tn)−f˙(t))∣∣∣⩾∣∣∣f˙(tn)∣∣∣−∣∣∣f˙(tn)−f˙(t)∣∣∣⩾ε−2ε=2ε因此,对于所有 n ∈ N n\in\mathbb{N} n∈N,有 ∣ ∫ 0 t n + δ f ˙ ( t ) d t − ∫ 0 t n f ˙ ( t ) d t ∣ = ∣ ∫ t n t n + δ f ˙ ( t ) d t ∣ = ∫ t n t n + δ ∣ f ˙ ( t ) ∣ d t ≥ ε δ 2 > 0 \left|\int_{0}^{t_{n}+\delta} \dot{f}(t) d t-\int_{0}^{t_{n}} \dot{f}(t) d t\right|=\left|\int_{t_{n}}^{t_{n}+\delta} \dot{f}(t) d t\right|=\int_{t_{n}}^{t_{n}+\delta}|\dot{f}(t)| d t \geq \frac{\varepsilon \delta}{2}>0 ∣∣∣∣∣∫0tn+δf˙(t)dt−∫0tnf˙(t)dt∣∣∣∣∣=∣∣∣∣∣∫tntn+δf˙(t)dt∣∣∣∣∣=∫tntn+δ∣f˙(t)∣dt≥2εδ>0
根据假设可知, ∫ 0 ∞ f ˙ ( t ) d t < β \int_0^\infty \dot f(t) dt<\beta ∫0∞f˙(t)dt<β 存在,因此,当 n → ∞ n\rightarrow \infty n→∞, ∣ ∫ 0 t n + δ f ˙ ( t ) d t − ∫ 0 t n f ˙ ( t ) d t ∣ → 0 \left|\int_{0}^{t_{n}+\delta} \dot{f}(t) d t-\int_{0}^{t_{n}} \dot{f}(t) d t\right| \rightarrow 0 ∣∣∣∣∣∫0tn+δf˙(t)dt−∫0tnf˙(t)dt∣∣∣∣∣→0,和上式产生矛盾,因此反证法可证,当 t → ∞ t \rightarrow \infty t→∞ 时, f ˙ ( t ) → 0 \dot{f}(t) \rightarrow 0 f˙(t)→0。
边栏推荐
- awk从入门到入土(15)awk执行外部命令
- Call Baidu map to display the current position
- 2022 electrician (intermediate) examination question bank and electrician (intermediate) examination questions and analysis
- [BSP video tutorial] stm32h7 video tutorial phase 5: MDK topic, system introduction to MDK debugging, AC5, AC6 compilers, RTE development environment and the role of various configuration items (2022-
- Horizon sunrise X3 PI (I) first boot details
- How to play dapr without kubernetes?
- 2022 tower crane driver examination and tower crane driver examination questions and analysis
- [CV] Wu Enda machine learning course notes | Chapter 9
- Group programming ladder race - exercise set l2-002 linked list de duplication
- awk从入门到入土(12)awk也可以写脚本,替代shell
猜你喜欢

Mouse over to change the transparency of web page image

Démarrage des microservices: passerelle

Educational Codeforces Round 119 (Rated for Div. 2)

User login function: simple but difficult

Redis 哨兵机制

manjaro安装微信

What exactly is DAAS data as a service? Don't be misled by other DAAS concepts

How college students choose suitable computers

微服务入门:Gateway网关

How to solve the problem that computers often flash
随机推荐
Flutter integrated amap_ flutter_ location
awk从入门到入土(8)数组
Mouse over to change the transparency of web page image
How does Xiaobai buy a suitable notebook
Awk from entry to earth (8) array
@Role of requestparam annotation
From scratch, use Jenkins to build and publish pipeline pipeline project
What sparks can applet container technology collide with IOT
C # implements a queue in which everything can be sorted
Manjaro install wechat
deno debugger
Newh3c - routing protocol (RIP, OSPF)
@Role of pathvariable annotation
C#,数值计算(Numerical Recipes in C#),线性代数方程的求解,Gauss-Jordan消去法,源代码
Display Chinese characters according to numbers
ArcGIS应用(二十二)Arcmap加载激光雷达las格式数据
User login function: simple but difficult
Flutter 集成 amap_flutter_location
ctfshow web255 web 256 web257
2022 electrician (intermediate) examination question bank and electrician (intermediate) examination questions and analysis