当前位置:网站首页>20220701 Barbalat引理证明
20220701 Barbalat引理证明
2022-07-04 08:47:00 【能吃辣吗】
(Barbalat 引理)
如果可微函数 f ( t ) f(t) f(t), 当 t → ∞ t \rightarrow \infty t→∞ 时存在有限极限, 且 f ˙ ( t ) \dot{f}(t) f˙(t) 一致连续, 那么当 t → ∞ t \rightarrow \infty t→∞ 时, f ˙ ( t ) → 0 \dot{f}(t) \rightarrow 0 f˙(t)→0。
证明(反证法):
假设当 t → ∞ t \rightarrow \infty t→∞ 时, f ˙ ( t ) → 0 \dot{f}(t) \rightarrow 0 f˙(t)→0 不成立,那么存在一个递增无穷序列 { t n } n ∈ N \{t_n\}_{n\in\mathbb{N}} { tn}n∈N 使得(1)当 n → ∞ n \rightarrow \infty n→∞ 有 t n → ∞ t_n \rightarrow \infty tn→∞ ;(2) ∣ f ˙ ( t n ) ∣ ⩾ ϵ > 0 |\dot{f}(t_n) | \geqslant \epsilon>0 ∣f˙(tn)∣⩾ϵ>0 对于所有 { t n } \{t_n\} { tn}。
考虑 f ˙ ( t ) \dot{f}(t) f˙(t) 的一致连续性,根据 ϵ − δ \epsilon-\delta ϵ−δ 理论,存在某个 ϵ > 0 \epsilon>0 ϵ>0 ,使得对于所有 n ∈ N n\in\mathbb{N} n∈N 和 所有 t ∈ R t \in \mathbb{R} t∈R,当
∣ t n − t ∣ ⩽ δ |t_n -t|\leqslant\delta ∣tn−t∣⩽δ则有 ∣ f ˙ ( t n ) − f ˙ ( t ) ∣ ≤ ε 2 \left|\dot{f}\left(t_{n}\right)-\dot{f}(t)\right| \leq \frac{\varepsilon}{2} ∣∣∣f˙(tn)−f˙(t)∣∣∣≤2ε
因此,对于所有 t ∈ [ t n , t n + δ ] t\in[t_n,t_n+\delta] t∈[tn,tn+δ],和所有 n ∈ N n\in\mathbb{N} n∈N,有 ∣ f ˙ ( t ) ∣ = ∣ f ˙ ( t n ) − ( f ˙ ( t n ) − f ˙ ( t ) ) ∣ ⩾ ∣ f ˙ ( t n ) ∣ − ∣ f ˙ ( t n ) − f ˙ ( t ) ∣ ⩾ ε − ε 2 = ε 2 \begin{aligned} |\dot{f}(t)| =\left|\dot{f}\left(t_{n}\right)-\left(\dot{f}\left(t_{n}\right)-\dot{f}(t)\right)\right| \geqslant \left|\dot{f}\left(t_{n}\right)\right|-\left|\dot{f}\left(t_{n}\right)-\dot{f}(t)\right| \geqslant \varepsilon-\frac{\varepsilon}{2}=\frac{\varepsilon}{2} \end{aligned} ∣f˙(t)∣=∣∣∣f˙(tn)−(f˙(tn)−f˙(t))∣∣∣⩾∣∣∣f˙(tn)∣∣∣−∣∣∣f˙(tn)−f˙(t)∣∣∣⩾ε−2ε=2ε因此,对于所有 n ∈ N n\in\mathbb{N} n∈N,有 ∣ ∫ 0 t n + δ f ˙ ( t ) d t − ∫ 0 t n f ˙ ( t ) d t ∣ = ∣ ∫ t n t n + δ f ˙ ( t ) d t ∣ = ∫ t n t n + δ ∣ f ˙ ( t ) ∣ d t ≥ ε δ 2 > 0 \left|\int_{0}^{t_{n}+\delta} \dot{f}(t) d t-\int_{0}^{t_{n}} \dot{f}(t) d t\right|=\left|\int_{t_{n}}^{t_{n}+\delta} \dot{f}(t) d t\right|=\int_{t_{n}}^{t_{n}+\delta}|\dot{f}(t)| d t \geq \frac{\varepsilon \delta}{2}>0 ∣∣∣∣∣∫0tn+δf˙(t)dt−∫0tnf˙(t)dt∣∣∣∣∣=∣∣∣∣∣∫tntn+δf˙(t)dt∣∣∣∣∣=∫tntn+δ∣f˙(t)∣dt≥2εδ>0
根据假设可知, ∫ 0 ∞ f ˙ ( t ) d t < β \int_0^\infty \dot f(t) dt<\beta ∫0∞f˙(t)dt<β 存在,因此,当 n → ∞ n\rightarrow \infty n→∞, ∣ ∫ 0 t n + δ f ˙ ( t ) d t − ∫ 0 t n f ˙ ( t ) d t ∣ → 0 \left|\int_{0}^{t_{n}+\delta} \dot{f}(t) d t-\int_{0}^{t_{n}} \dot{f}(t) d t\right| \rightarrow 0 ∣∣∣∣∣∫0tn+δf˙(t)dt−∫0tnf˙(t)dt∣∣∣∣∣→0,和上式产生矛盾,因此反证法可证,当 t → ∞ t \rightarrow \infty t→∞ 时, f ˙ ( t ) → 0 \dot{f}(t) \rightarrow 0 f˙(t)→0。
边栏推荐
- Conversion of yolov5 XML dataset to VOC dataset
- 【无标题】转发最小二乘法
- How to solve the problem of computer jam and slow down
- @Role of pathvariable annotation
- DM8 tablespace backup and recovery
- ctfshow web255 web 256 web257
- Codeforces Global Round 21(A-E)
- Newh3c - network address translation (NAT)
- awk从入门到入土(9)循环语句
- DM8 database recovery based on point in time
猜你喜欢
Basic operations of databases and tables ----- view data tables
Take you to master the formatter of visual studio code
4 small ways to make your Tiktok video clearer
[error record] no matching function for call to 'cacheflush' cacheflush();)
Educational Codeforces Round 119 (Rated for Div. 2)
ArcGIS应用(二十二)Arcmap加载激光雷达las格式数据
Live in a dream, only do things you don't say
Educational Codeforces Round 115 (Rated for Div. 2)
DM8 tablespace backup and recovery
Developers really review CSDN question and answer function, and there are many improvements~
随机推荐
Awk from entry to penetration (6) regular matching
Private collection project practice sharing [Yugong series] February 2022 U3D full stack class 007 - production and setting skybox resources
Conversion of yolov5 XML dataset to VOC dataset
From scratch, use Jenkins to build and publish pipeline pipeline project
广和通高性能4G/5G无线模组解决方案全面推动高效、低碳智能电网
Famous blackmail software stops operation and releases decryption keys. Most hospital IOT devices have security vulnerabilities | global network security hotspot on February 14
ctfshow web255 web 256 web257
Snipaste convenient screenshot software, which can be copied on the screen
swatch
DM8 database recovery based on point in time
What if I forget the router password
Use Alibaba cloud NPM image acceleration
[attack and defense world | WP] cat
Educational Codeforces Round 115 (Rated for Div. 2)
【无标题】转发最小二乘法
C#实现一个万物皆可排序的队列
根据数字显示中文汉字
A method for detecting outliers of data
ArcGIS应用(二十二)Arcmap加载激光雷达las格式数据
Redis sentinel mechanism