当前位置:网站首页>Mujoco Jacobi - inverse motion - sensor

Mujoco Jacobi - inverse motion - sensor

2022-07-07 00:28:00 Feisy

1 Use sensors to monitor end position and speed

2 Jacobian

 Insert picture description here

3 Calculate the end position and speed through Jacobi , Then compare it with the sensor

 Insert picture description here

  double jacp[6]={0};
  double point[3]={d->sensordata[0],d->sensordata[1],d->sensordata[2]};
  int body = 2;
  mj_jac(m,d,jacp,NULL,point,body);
 
  double J[4]={ jacp[0],jacp[1],jacp[4],jacp[5]};
  double qdot[2] = {d->qvel[0],d->qvel[1]};
  double xdot[2] ={0};
  //xdot = J*qdot
  mju_mulMatVec(xdot,J,qdot,2,2);
   printf("velocity using jacobian: %f %f \n",xdot[0],xdot[1]);
   printf("velocity using sensordata= %f %f \n",d->sensordata[3],d->sensordata[5]);

 Insert picture description here


4 Inverse motion

Calculation principle
 Insert picture description here
Example : We want the end to be rounded , The method is

  1. Find the desired coordinates first through the formula
  2. Subtract the desired coordinates from the coordinates sensed by the current sensor , Get the difference
  3. According to the above principle formula , Use Jacobi's inversion to calculate the angle of each joint
  4. Send the angle to the motor

//1  Jacobi's calculation 
  double J[4]={
     jacp[0],jacp[1],jacp[4],jacp[5]};
  double qdot[2] = {
    d->qvel[0],d->qvel[1]};
  double xdot[2] ={
    0};
  //xdot = J*qdot
  mju_mulMatVec(xdot,J,qdot,2,2);
 

  //2  Jacobi's inverse 
  int i;
  double det_J = J[0]*J[3]-J[1]*J[2];
  double J_temp[] = {
    J[3],-J[1],-J[2],J[0]};
  double J_inv[4]={
    };
  for (i=0;i<4;i++)
    J_inv[i] = J_temp[i]/det_J;

  //3  Calculate the coordinates of the next position 
  double x,y;
  x = x_0 + r*cos(omega*d->time);
  y = y_0 + r*sin(omega*d->time);

  //4  The difference between the coordinates of the next position and the position sensed by the current sensor , As a change of the end 
  double dr[] = {
    x- d->sensordata[0],y - d->sensordata[2]};
  double dq[2] ={
    };

  //5  Calculate the angle change according to the end transformation 
  //dq = Jinv*dr
  mju_mulMatVec(dq,J_inv,dr,2,2);
  printf("%f %f \n", dq[0],dq[1]);

  //6  Tell the motor to rotate to the next angle 
  //q -> q+dq
  //ctrl = q
  d->ctrl[0] = d->qpos[0]+dq[0];
  d->ctrl[2] = d->qpos[1]+dq[1];

Model file

<mujoco>
	<o ption timestep="0.0001" integrator="RK4" gravity="0 0 0" >
		<flag sensornoise="enable" energy="enable" contact="disable" />
	</option>
	<worldbody>
        <light diffuse=".5 .5 .5" pos="0 0 3" dir="0 0 -1"/>
		<geom type="plane" size="1 1 0.1" rgba=".9 0 0 1"/>
		<body pos="0 0 1.25" euler="0 90 0">
			<joint name="pin" type="hinge" axis = "0 -1 0" pos="0 0 -0.5"/>
			<geom type="cylinder" size="0.05 0.5" rgba="0 .9 0 1" mass="1"/>
			<body pos="0 0.1 1" euler="0 0 0">
				<joint name="pin2" type="hinge" axis = "0 -1 0" pos="0 0 -0.5"/>
				<geom type="cylinder" size="0.05 0.5" rgba="0 0 .9 1" mass="1"/>
				<site name="endeff" pos="0 0 0.5" size="0.1"/>
			</body>
		</body>
	</worldbody>
	<actuator>
		<position name="pservo1" joint="pin" kp="100" />
		<velocity name="vservo1" joint="pin" kv="10" />
		<position name="pservo2" joint="pin2" kp="100" />
		<velocity name="vservo2" joint="pin2" kv="10" />
	</actuator>
	<sensor>
		<framepos objtype="site" objname="endeff"/>
		<framelinvel objtype="site" objname="endeff"/>
	</sensor>
</mujoco>




#include<stdbool.h> //for bool
//#include<unistd.h> //for usleep
//#include <math.h>

#include "mujoco.h"
#include "glfw3.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"

//simulation end time
double simend = 20;
double qinit[2] = {
    0,1.25};
double r = 0.5;
double omega = 0.5;

double x_0, y_0;

//related to writing data to a file
FILE *fid;
int loop_index = 0;
const int data_frequency = 10; //frequency at which data is written to a file


// char xmlpath[] = "../myproject/template_writeData/pendulum.xml";
// char datapath[] = "../myproject/template_writeData/data.csv";


//Change the path <template_writeData>
//Change the xml file
char path[] = "../myproject/dbpendulum_ik/";
char xmlfile[] = "doublependulum.xml";


char datafile[] = "data.csv";


// MuJoCo data structures
mjModel* m = NULL;                  // MuJoCo model
mjData* d = NULL;                   // MuJoCo data
mjvCamera cam;                      // abstract camera
mjvOption opt;                      // visualization options
mjvScene scn;                       // abstract scene
mjrContext con;                     // custom GPU context

// mouse interaction
bool button_left = false;
bool button_middle = false;
bool button_right =  false;
double lastx = 0;
double lasty = 0;

// holders of one step history of time and position to calculate dertivatives
mjtNum position_history = 0;
mjtNum previous_time = 0;

// controller related variables
float_t ctrl_update_freq = 100;
mjtNum last_update = 0.0;
mjtNum ctrl;

// keyboard callback
void keyboard(GLFWwindow* window, int key, int scancode, int act, int mods)
{
    
    // backspace: reset simulation
    if( act==GLFW_PRESS && key==GLFW_KEY_BACKSPACE )
    {
    
        mj_resetData(m, d);
        mj_forward(m, d);
    }
}

// mouse button callback
void mouse_button(GLFWwindow* window, int button, int act, int mods)
{
    
    // update button state
    button_left =   (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_LEFT)==GLFW_PRESS);
    button_middle = (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_MIDDLE)==GLFW_PRESS);
    button_right =  (glfwGetMouseButton(window, GLFW_MOUSE_BUTTON_RIGHT)==GLFW_PRESS);

    // update mouse position
    glfwGetCursorPos(window, &lastx, &lasty);
}


// mouse move callback
void mouse_move(GLFWwindow* window, double xpos, double ypos)
{
    
    // no buttons down: nothing to do
    if( !button_left && !button_middle && !button_right )
        return;

    // compute mouse displacement, save
    double dx = xpos - lastx;
    double dy = ypos - lasty;
    lastx = xpos;
    lasty = ypos;

    // get current window size
    int width, height;
    glfwGetWindowSize(window, &width, &height);

    // get shift key state
    bool mod_shift = (glfwGetKey(window, GLFW_KEY_LEFT_SHIFT)==GLFW_PRESS ||
                      glfwGetKey(window, GLFW_KEY_RIGHT_SHIFT)==GLFW_PRESS);

    // determine action based on mouse button
    mjtMouse action;
    if( button_right )
        action = mod_shift ? mjMOUSE_MOVE_H : mjMOUSE_MOVE_V;
    else if( button_left )
        action = mod_shift ? mjMOUSE_ROTATE_H : mjMOUSE_ROTATE_V;
    else
        action = mjMOUSE_ZOOM;

    // move camera
    mjv_moveCamera(m, action, dx/height, dy/height, &scn, &cam);
}


// scroll callback
void scroll(GLFWwindow* window, double xoffset, double yoffset)
{
    
    // emulate vertical mouse motion = 5% of window height
    mjv_moveCamera(m, mjMOUSE_ZOOM, 0, -0.05*yoffset, &scn, &cam);
}


//****************************
//This function is called once and is used to get the headers
void init_save_data()
{
    
  //write name of the variable here (header)
   fprintf(fid,"t, ");
   fprintf(fid,"x, y ");

   //Don't remove the newline
   fprintf(fid,"\n");
}

//***************************
//This function is called at a set frequency, put data here
void save_data(const mjModel* m, mjData* d)
{
    
  //data here should correspond to headers in init_save_data()
  //seperate data by a space %f followed by space
  fprintf(fid,"%f, ",d->time);
  fprintf(fid,"%f, %f ",d->sensordata[0],d->sensordata[2]);

  //Don't remove the newline
  fprintf(fid,"\n");
}

/******************************/
void set_torque_control(const mjModel* m,int actuator_no,int flag)
{
    
  if (flag==0)
    m->actuator_gainprm[10*actuator_no+0]=0;
  else
    m->actuator_gainprm[10*actuator_no+0]=1;
}
/******************************/


/******************************/
void set_position_servo(const mjModel* m,int actuator_no,double kp)
{
    
  m->actuator_gainprm[10*actuator_no+0]=kp;
  m->actuator_biasprm[10*actuator_no+1]=-kp;
}
/******************************/

/******************************/
void set_velocity_servo(const mjModel* m,int actuator_no,double kv)
{
    
  m->actuator_gainprm[10*actuator_no+0]=kv;
  m->actuator_biasprm[10*actuator_no+2]=-kv;
}
/******************************/

//**************************
void init_controller(const mjModel* m, mjData* d)
{
    
  //mj_step(m,d);
  mj_forward(m,d);
  printf("position = %f %f \n",d->sensordata[0],d->sensordata[2]);

  //x0+r = d->sensordata[0];
  //y0 = d->sensordata[2]

  x_0 = d->sensordata[0] - r;
  y_0 = d->sensordata[2];
}

//**************************
void mycontroller(const mjModel* m, mjData* d)
{
    
  //write control here
  //printf("position = %f %f %f \n",d->sensordata[0],d->sensordata[1],d->sensordata[2]);
  //printf("velocity = %f %f %f \n",d->sensordata[3],d->sensordata[4],d->sensordata[5]);

  //void mj_jac(const mjModel* m, const mjData* d,mjtNum* jacp, mjtNum* jacr, const mjtNum point[3], int body);
  double jacp[6]={
    0};
  double point[3]={
    d->sensordata[0],d->sensordata[1],d->sensordata[2]};
  int body = 2;
  mj_jac(m,d,jacp,NULL,point,body);
  // printf("J = \n");//3x2
  // printf("%f %f \n", jacp[0],jacp[1]);
  // printf("%f %f \n", jacp[2],jacp[3]);
  // printf("%f %f \n", jacp[4],jacp[5]);
  // printf("*********\n");

  double J[4]={
     jacp[0],jacp[1],jacp[4],jacp[5]};
  double qdot[2] = {
    d->qvel[0],d->qvel[1]};
  double xdot[2] ={
    0};
  //xdot = J*qdot
  mju_mulMatVec(xdot,J,qdot,2,2);
  // printf("velocity using jacobian: %f %f \n",xdot[0],xdot[1]);
  // printf("velocity using sensordata= %f %f \n",d->sensordata[3],d->sensordata[5]);

  // d->ctrl[0] = qinit[0];
  // d->ctrl[2] = qinit[1];

  int i;
  double det_J = J[0]*J[3]-J[1]*J[2];
  double J_temp[] = {
    J[3],-J[1],-J[2],J[0]};
  double J_inv[4]={
    };
  for (i=0;i<4;i++)
    J_inv[i] = J_temp[i]/det_J;

  double x,y;
  x = x_0 + r*cos(omega*d->time);
  y = y_0 + r*sin(omega*d->time);

  double dr[] = {
    x- d->sensordata[0],y - d->sensordata[2]};
  double dq[2] ={
    };

  //dq = Jinv*dr
  mju_mulMatVec(dq,J_inv,dr,2,2);
  printf("%f %f \n", dq[0],dq[1]);

  //q -> q+dq
  //ctrl = q
  d->ctrl[0] = d->qpos[0]+dq[0];
  d->ctrl[2] = d->qpos[1]+dq[1];




  //write data here (dont change/dete this function call; instead write what you need to save in save_data)
  if ( loop_index%data_frequency==0)
    {
    
      save_data(m,d);
    }
  loop_index = loop_index + 1;
}


//************************
// main function
int main(int argc, const char** argv)
{
    

    // activate software
    mj_activate("mjkey.txt");

    char xmlpath[100]={
    };
    char datapath[100]={
    };

    strcat(xmlpath,path);
    strcat(xmlpath,xmlfile);

    strcat(datapath,path);
    strcat(datapath,datafile);


    // load and compile model
    char error[1000] = "Could not load binary model";

    // check command-line arguments
    if( argc<2 )
        m = mj_loadXML(xmlpath, 0, error, 1000);

    else
        if( strlen(argv[1])>4 && !strcmp(argv[1]+strlen(argv[1])-4, ".mjb") )
            m = mj_loadModel(argv[1], 0);
        else
            m = mj_loadXML(argv[1], 0, error, 1000);
    if( !m )
        mju_error_s("Load model error: %s", error);

    // make data
    d = mj_makeData(m);


    // init GLFW
    if( !glfwInit() )
        mju_error("Could not initialize GLFW");

    // create window, make OpenGL context current, request v-sync
    GLFWwindow* window = glfwCreateWindow(1244, 700, "Demo", NULL, NULL);
    glfwMakeContextCurrent(window);
    glfwSwapInterval(1);

    // initialize visualization data structures
    mjv_defaultCamera(&cam);
    mjv_defaultOption(&opt);
    mjv_defaultScene(&scn);
    mjr_defaultContext(&con);
    mjv_makeScene(m, &scn, 2000);                // space for 2000 objects
    mjr_makeContext(m, &con, mjFONTSCALE_150);   // model-specific context

    // install GLFW mouse and keyboard callbacks
    glfwSetKeyCallback(window, keyboard);
    glfwSetCursorPosCallback(window, mouse_move);
    glfwSetMouseButtonCallback(window, mouse_button);
    glfwSetScrollCallback(window, scroll);

    double arr_view[] = {
    89.608063, -11.588379, 5, 0.000000, 0.000000, 1.000000};
    cam.azimuth = arr_view[0];
    cam.elevation = arr_view[1];
    cam.distance = arr_view[2];
    cam.lookat[0] = arr_view[3];
    cam.lookat[1] = arr_view[4];
    cam.lookat[2] = arr_view[5];

    // install control callback
    mjcb_control = mycontroller;
    d->qpos[0] = qinit[0];
    d->qpos[1] = qinit[1];

    fid = fopen(datapath,"w");
    init_save_data();
    init_controller(m,d);

    // use the first while condition if you want to simulate for a period.
    while( !glfwWindowShouldClose(window))
    {
    
        // advance interactive simulation for 1/60 sec
        // Assuming MuJoCo can simulate faster than real-time, which it usually can,
        // this loop will finish on time for the next frame to be rendered at 60 fps.
        // Otherwise add a cpu timer and exit this loop when it is time to render.
        mjtNum simstart = d->time;
        while( d->time - simstart < 1.0/60.0 )
        {
    
            mj_step(m, d);
        }

        if (d->time>=simend)
        {
    
           fclose(fid);
           break;
         }

       // get framebuffer viewport
        mjrRect viewport = {
    0, 0, 0, 0};
        glfwGetFramebufferSize(window, &viewport.width, &viewport.height);

          // update scene and render
        mjv_updateScene(m, d, &opt, NULL, &cam, mjCAT_ALL, &scn);
        mjr_render(viewport, &scn, &con);
        //printf("{%f, %f, %f, %f, %f, %f};\n",cam.azimuth,cam.elevation, cam.distance,cam.lookat[0],cam.lookat[1],cam.lookat[2]);

        // swap OpenGL buffers (blocking call due to v-sync)
        glfwSwapBuffers(window);

        // process pending GUI events, call GLFW callbacks
        glfwPollEvents();

    }

    // free visualization storage
    mjv_freeScene(&scn);
    mjr_freeContext(&con);

    // free MuJoCo model and data, deactivate
    mj_deleteData(d);
    mj_deleteModel(m);
    mj_deactivate();

    // terminate GLFW (crashes with Linux NVidia drivers)
    #if defined(__APPLE__) || defined(_WIN32)
        glfwTerminate();
    #endif

    return 1;
}

原网站

版权声明
本文为[Feisy]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202130958217970.html