当前位置:网站首页>Data analysis course notes (III) array shape and calculation, numpy storage / reading data, indexing, slicing and splicing
Data analysis course notes (III) array shape and calculation, numpy storage / reading data, indexing, slicing and splicing
2022-07-07 00:21:00 【M Walker x】
Data analysis course notes
The shape of the array
The calculation of array
Calculate in different dimensions
Broadcasting principles
Axis (axis)
numpy Reading data
np.loadtxt(fname,dtype=np.float,delimiter=None,skiprows=0,usecols=None,unpack=False)
Data sources : https://www.kaggle.com/datasnaek/youtube/data
# coding=utf-8
import numpy as np
us_file_path = "./youtube_video_data/US_video_data_numbers.csv"
uk_file_path = "./youtube_video_data/GB_video_data_numbers.csv"
# t1 = np.loadtxt(us_file_path,delimiter=",",dtype="int",unpack=True)
t2 = np.loadtxt(us_file_path,delimiter=",",dtype="int")
# print(t1)
print(t2)
print("*"*100)
# Take row
# print(t2[2])
# Take consecutive multiple lines
# print(t2[2:])
# Take discontinuous multiple lines
# print(t2[[2,8,10]])
# print(t2[1,:])
# print(t2[2:,:])
# print(t2[[2,10,3],:])
# Fetch
# print(t2[:,0])
# Take consecutive Columns
# print(t2[:,2:])
# Take discontinuous multiple columns
# print(t2[:,[0,2]])
# Go to rows and columns , Take the first place 3 That's ok , The value of the fourth column
# a = t2[2,3]
# print(a)
# print(type(a))
# Fetching multiple rows and columns , Take the first place 3 Line to line five , The first 2 Column to the first 4 The results of the column
# Go to the intersection of rows and columns
b = t2[2:5,1:4]
# print(b)
# Take multiple non adjacent points
# The result is (0,0) (2,1) (2,3)
c = t2[[0,2,2],[0,1,3]]
print(c)
numpy Index and slice
numpy Boolean index in
numpy Ternary operator in
numpy Medium clip( tailoring )
numpy Medium nan and inf
numpy Medium nan Points for attention
numpy Statistical functions commonly used in
All statistical results of multidimensional array are returned by default , If specified axis Returns a result on the current axis
Missing value processing
# coding=utf-8
import numpy as np
# print(t1)
def fill_ndarray(t1):
for i in range(t1.shape[1]): # Traverse each column
temp_col = t1[:,i] # The current column
nan_num = np.count_nonzero(temp_col!=temp_col)
if nan_num !=0: # Not for 0, Indicates that there are... In the current column nan
temp_not_nan_col = temp_col[temp_col==temp_col] # The current column is not nan Of array
# Check that the current is nan The location of , Assign a value that is not nan The average of
temp_col[np.isnan(temp_col)] = temp_not_nan_col.mean()
return t1
if __name__ == '__main__':
t1 = np.arange(24).reshape((4, 6)).astype("float")
t1[1, 2:] = np.nan
print(t1)
t1 = fill_ndarray(t1)
print(t1)
- How to select one or more rows of data ( Column )?
- How to assign values to selected rows or columns ?
- How to make it bigger than 10 Replace the value of with 10?
- np.where How to use ?
- np.clip How to use ?
- How to transpose ( Exchange axis )?
- Read and save data as csv
- np.nan and np.inf What is it?
- How many common statistical functions do you remember ?
- What information does the standard deviation reflect about the data
#### numpy Index and slice of
- t[10,20]
- `t[[2,5],[4,8]]`
- t[3:]
- t[[2,5,6]]
- t[:,:4]
- t[:,[2,5,6]]
- t[2:3,5:7]
#### numpy Medium bool Indexes ,where,clip Use
- t[t<30] = 2
- np.where(t<10,20,5)
- t.clip(10,20)
#### Transpose and read local files
- t.T
- t.transpose()
- t.sawpaxes()
- np.loadtxt(file_path,delimiter,dtype)
#### nan and inf What is it?
- nan not a number
- np.nan != np.nan
- Any value sum nan All calculations are nan
- inf infinite
#### Commonly used statistical functions
- t.sum()
- t.mean()
- np.meadian()
- t.max()
- t.min()
- np.ptp()
- t.std()
import numpy as np
from matplotlib import pyplot as plt
us_file_path = "./youtube_video_data/US_video_data_numbers.csv"
uk_file_path = "./youtube_video_data/GB_video_data_numbers.csv"
# t1 = np.loadtxt(us_file_path,delimiter=",",dtype="int",unpack=True)
t_us = np.loadtxt(us_file_path,delimiter=",",dtype="int")
# Take the data of the comment
t_us_comments = t_us[:,-1]
# Choose more than 5000 Small data
t_us_comments = t_us_comments[t_us_comments<=5000]
print(t_us_comments.max(),t_us_comments.min())
d = 50
bin_nums = (t_us_comments.max()-t_us_comments.min())//d
# mapping
plt.figure(figsize=(20,8),dpi=80)
plt.hist(t_us_comments,bin_nums)
plt.show()
import numpy as np
from matplotlib import pyplot as plt
us_file_path = "./youtube_video_data/US_video_data_numbers.csv"
uk_file_path = "./youtube_video_data/GB_video_data_numbers.csv"
# t1 = np.loadtxt(us_file_path,delimiter=",",dtype="int",unpack=True)
t_uk = np.loadtxt(uk_file_path,delimiter=",",dtype="int")
# Choose to like books better than 50 Ten thousand small data
t_uk = t_uk[t_uk[:,1]<=500000]
t_uk_comment = t_uk[:,-1]
t_uk_like = t_uk[:,1]
plt.figure(figsize=(20,8),dpi=80)
plt.scatter(t_uk_like,t_uk_comment)
plt.show()
Data splicing
Data row column exchange
Now I hope to study and analyze the data methods of the two countries in the previous case , So what should I do ?
# coding=utf-8
import numpy as np
us_data = "./youtube_video_data/US_video_data_numbers.csv"
uk_data = "./youtube_video_data/GB_video_data_numbers.csv"
# Load country data
us_data = np.loadtxt(us_data,delimiter=",",dtype=int)
uk_data = np.loadtxt(uk_data,delimiter=",",dtype=int)
# Add country information
# The structure is all 0 The data of
zeros_data = np.zeros((us_data.shape[0],1)).astype(int)
ones_data = np.ones((uk_data.shape[0],1)).astype(int)
# Add a column with all 0,1 Array of
us_data = np.hstack((us_data,zeros_data))
uk_data = np.hstack((uk_data,ones_data))
# Splice two sets of data
final_data = np.vstack((us_data,uk_data))
print(final_data)
More easy-to-use methods
numpy Generate random number
# coding=utf-8
import numpy as np
np.random.seed(10)
t = np.random.randint(0,20,(3,4))
print(t)
numpy Points for attention copy and view
边栏推荐
- MySQL主从之多源复制(3主1从)搭建及同步测试
- 2022年PMP项目管理考试敏捷知识点(9)
- After leaving a foreign company, I know what respect and compliance are
- The difference between redirectto and navigateto in uniapp
- System activity monitor ISTAT menus 6.61 (1185) Chinese repair
- 微信小程序uploadfile服务器,微信小程序之wx.uploadFile[通俗易懂]
- 一图看懂对程序员的误解:西方程序员眼中的中国程序员
- Use package FY in Oracle_ Recover_ Data. PCK to recover the table of truncate misoperation
- TypeScript增量编译
- vector的使用方法_vector指针如何使用
猜你喜欢
随机推荐
The programmer resigned and was sentenced to 10 months for deleting the code. Jingdong came home and said that it took 30000 to restore the database. Netizen: This is really a revenge
Tourism Management System Based on jsp+servlet+mysql framework [source code + database + report]
【vulnhub】presidential1
DAY TWO
Leecode brush questions record interview questions 32 - I. print binary tree from top to bottom
A way of writing SQL, update when matching, or insert
509 certificat basé sur Go
What can the interactive slide screen demonstration bring to the enterprise exhibition hall
沉浸式投影在线下展示中的三大应用特点
Three sentences to briefly introduce subnet mask
PDF文档签名指南
Operation test of function test basis
【2022全网最细】接口测试一般怎么测?接口测试的流程和步骤
What is AVL tree?
C language input / output stream and file operation [II]
How about the order management of okcc call center
Leecode brush question record sword finger offer 58 - ii Rotate string left
智能运维应用之道,告别企业数字化转型危机
File and image comparison tool kaleidoscope latest download
17、 MySQL - high availability + read / write separation + gtid + semi synchronous master-slave replication cluster