当前位置:网站首页>pytorch加载语音类自定义数据集

pytorch加载语音类自定义数据集

2020-11-09 12:31:00 凌逆战

  pytorch对一下常用的公开数据集有很方便的API接口,但是当我们需要使用自己的数据集训练神经网络时,就需要自定义数据集,在pytorch中,提供了一些类,方便我们定义自己的数据集合

  • torch.utils.data.Dataset:所有继承他的子类都应该重写  __len()__  , __getitem()__ 这两个方法
    •  __len()__ :返回数据集中数据的数量
    •   __getitem()__ :返回支持下标索引方式获取的一个数据
  • torch.utils.data.DataLoader:对数据集进行包装,可以设置batch_size、是否shuffle....

第一步

  自定义的 Dataset 都需要继承 torch.utils.data.Dataset 类,并且重写它的两个成员方法:

  • __len()__:读取数据,返回数据和标签
  • __getitem()__:返回数据集的长度
from torch.utils.data import Dataset


class AudioDataset(Dataset):
    def __init__(self, ...):
        """类的初始化"""
        pass

    def __getitem__(self, item):
        """每次怎么读数据,返回数据和标签"""
        return data, label

    def __len__(self):
        """返回整个数据集的长度"""
        return total

注意事项:Dataset只负责数据的抽象,一次调用getiitem只返回一个样本

案例:

  文件目录结构

  • p225
    • ***.wav
    • ***.wav
    • ***.wav
    • ...
  • dataset.py

目的:读取p225文件夹中的音频数据

 1 class AudioDataset(Dataset):
 2     def __init__(self, data_folder, sr=16000, dimension=8192):
 3         self.data_folder = data_folder
 4         self.sr = sr
 5         self.dim = dimension
 6 
 7         # 获取音频名列表
 8         self.wav_list = []
 9         for root, dirnames, filenames in os.walk(data_folder):
10             for filename in fnmatch.filter(filenames, "*.wav"):  # 实现列表特殊字符的过滤或筛选,返回符合匹配“.wav”字符列表
11                 self.wav_list.append(os.path.join(root, filename))
12 
13     def __getitem__(self, item):
14         # 读取一个音频文件,返回每个音频数据
15         filename = self.wav_list[item]
16         wb_wav, _ = librosa.load(filename, sr=self.sr)
17 
18         # 取 帧
19         if len(wb_wav) >= self.dim:
20             max_audio_start = len(wb_wav) - self.dim
21             audio_start = np.random.randint(0, max_audio_start)
22             wb_wav = wb_wav[audio_start: audio_start + self.dim]
23         else:
24             wb_wav = np.pad(wb_wav, (0, self.dim - len(wb_wav)), "constant")
25 
26         return wb_wav, filename
27 
28     def __len__(self):
29         # 音频文件的总数
30         return len(self.wav_list)

注意事项:19-24行:每个音频的长度不一样,如果直接读取数据返回出来的话,会造成维度不匹配而报错,因此只能每次取一个音频文件读取一帧,这样显然并没有用到所有的语音数据,

第二步

  实例化 Dataset 对象

Dataset= AudioDataset("./p225", sr=16000)

如果要通过batch读取数据的可直接跳到第三步,如果你想一个一个读取数据的可以看我接下来的操作

# 实例化AudioDataset对象
train_set = AudioDataset("./p225", sr=16000)

for i, data in enumerate(train_set):
    wb_wav, filname = data
    print(i, wb_wav.shape, filname)

    if i == 3:
        break
    # 0 (8192,) ./p225\p225_001.wav
    # 1 (8192,) ./p225\p225_002.wav
    # 2 (8192,) ./p225\p225_003.wav
    # 3 (8192,) ./p225\p225_004.wav

第三步

  如果想要通过batch读取数据,需要使用DataLoader进行包装

为何要使用DataLoader?

  1. 深度学习的输入是mini_batch形式
  2. 样本加载时候可能需要随机打乱顺序,shuffle操作
  3. 样本加载需要采用多线程

  pytorch提供的 DataLoader 封装了上述的功能,这样使用起来更方便。

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False)

参数

  • dataset:加载的数据集(Dataset对象)
  • batch_size每个批次要加载多少个样本(默认值:1)
  • shuffle:每个epoch是否将数据打乱
  • sampler定义从数据集中抽取样本的策略如果指定,则不能指定洗牌。
  • batch_sampler类似于sampler,但每次返回一批索引。与batch_size、shuffle、sampler和drop_last相互排斥。
  • num_workers:使用多进程加载的进程数,0代表不使用多线程
  • collate_fn:如何将多个样本数据拼接成一个batch,一般使用默认拼接方式
  • pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些
  • drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃

返回:数据加载器

案例:

# 实例化AudioDataset对象
train_set = AudioDataset("./p225", sr=16000)
train_loader = DataLoader(train_set, batch_size=8, shuffle=True)

for (i, data) in enumerate(train_loader):
    wav_data, wav_name = data
    print(wav_data.shape)   # torch.Size([8, 8192])
    print(i, wav_name)
    # ('./p225\\p225_293.wav', './p225\\p225_156.wav', './p225\\p225_277.wav', './p225\\p225_210.wav',
    # './p225\\p225_126.wav', './p225\\p225_021.wav', './p225\\p225_257.wav', './p225\\p225_192.wav')

我们来吃几个栗子消化一下:

栗子1

  这个例子就是本文一直举例的,栗子1只是合并了一下而已

  文件目录结构

  • p225
    • ***.wav
    • ***.wav
    • ***.wav
    • ...
  • dataset.py

目的:读取p225文件夹中的音频数据

 1 import fnmatch
 2 import os
 3 import librosa
 4 import numpy as np
 5 from torch.utils.data import Dataset
 6 from torch.utils.data import DataLoader
 7 
 8 
 9 class Aduio_DataLoader(Dataset):
10     def __init__(self, data_folder, sr=16000, dimension=8192):
11         self.data_folder = data_folder
12         self.sr = sr
13         self.dim = dimension
14 
15         # 获取音频名列表
16         self.wav_list = []
17         for root, dirnames, filenames in os.walk(data_folder):
18             for filename in fnmatch.filter(filenames, "*.wav"):  # 实现列表特殊字符的过滤或筛选,返回符合匹配“.wav”字符列表
19                 self.wav_list.append(os.path.join(root, filename))
20 
21     def __getitem__(self, item):
22         # 读取一个音频文件,返回每个音频数据
23         filename = self.wav_list[item]
24         print(filename)
25         wb_wav, _ = librosa.load(filename, sr=self.sr)
26 
27         # 取 帧
28         if len(wb_wav) >= self.dim:
29             max_audio_start = len(wb_wav) - self.dim
30             audio_start = np.random.randint(0, max_audio_start)
31             wb_wav = wb_wav[audio_start: audio_start + self.dim]
32         else:
33             wb_wav = np.pad(wb_wav, (0, self.dim - len(wb_wav)), "constant")
34 
35         return wb_wav, filename
36 
37     def __len__(self):
38         # 音频文件的总数
39         return len(self.wav_list)
40 
41 
42 train_set = Aduio_DataLoader("./p225", sr=16000)
43 train_loader = DataLoader(train_set, batch_size=8, shuffle=True)
44 
45 
46 for (i, data) in enumerate(train_loader):
47     wav_data, wav_name = data
48     print(wav_data.shape)   # torch.Size([8, 8192])
49     print(i, wav_name)
50     # ('./p225\\p225_293.wav', './p225\\p225_156.wav', './p225\\p225_277.wav', './p225\\p225_210.wav',
51     # './p225\\p225_126.wav', './p225\\p225_021.wav', './p225\\p225_257.wav', './p225\\p225_192.wav')

注意事项

  1. 27-33行:每个音频的长度不一样,如果直接读取数据返回出来的话,会造成维度不匹配而报错,因此只能每次取一个音频文件读取一帧,这样显然并没有用到所有的语音数据,
  2. 48行:我们在__getitem__中并没有将numpy数组转换为tensor格式,可是第48行显示数据是tensor格式的。这里需要引起注意

栗子2

  相比于案例1,案例二才是重点,因为我们不可能每次只从一音频文件中读取一帧,然后读取另一个音频文件,通常情况下,一段音频有很多帧,我们需要的是按顺序的读取一个batch_size的音频帧,先读取第一个音频文件,如果满足一个batch,则不用读取第二个batch,如果不足一个batch则读取第二个音频文件,来补充。

  我给出一个建议,先按顺序读取每个音频文件,以窗长8192、帧移4096对语音进行分帧,然后拼接。得到(帧数,帧长,1)(frame_num, frame_len, 1)的数组保存到h5中。然后用上面讲到的 torch.utils.data.Dataset 和 torch.utils.data.DataLoader 读取数据。

具体实现代码:

  第一步:创建一个H5_generation脚本用来将数据转换为h5格式文件:

  第二步:通过Dataset从h5格式文件中读取数据

import numpy as np
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import h5py

def load_h5(h5_path):
    # load training data
    with h5py.File(h5_path, 'r') as hf:
        print('List of arrays in input file:', hf.keys())
        X = np.array(hf.get('data'), dtype=np.float32)
        Y = np.array(hf.get('label'), dtype=np.float32)
    return X, Y


class AudioDataset(Dataset):
    """数据加载器"""
    def __init__(self, data_folder):
        self.data_folder = data_folder
        self.X, self.Y = load_h5(data_folder)   # (3392, 8192, 1)

    def __getitem__(self, item):
        # 返回一个音频数据
        X = self.X[item]
        Y = self.Y[item]

        return X, Y

    def __len__(self):
        return len(self.X)


train_set = AudioDataset("./speaker225_resample_train.h5")
train_loader = DataLoader(train_set, batch_size=64, shuffle=True, drop_last=True)


for (i, wav_data) in enumerate(train_loader):
    X, Y = wav_data
    print(i, X.shape)
    # 0 torch.Size([64, 8192, 1])
    # 1 torch.Size([64, 8192, 1])
    # ...

我尝试在__init__中生成h5文件,但是会导致内存爆炸,就很奇怪,因此我只好分开了,

参考

pytorch学习(四)—自定义数据集(讲的比较详细)

 

版权声明
本文为[凌逆战]所创,转载请带上原文链接,感谢
https://www.cnblogs.com/LXP-Never/p/13816254.html