当前位置:网站首页>PyTorch四种常用优化器测试
PyTorch四种常用优化器测试
2022-07-06 09:16:00 【想成为风筝】
PyTorch四种常用优化器测试SGD、SGD(Momentum)、RMSprop、Adam
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
#超参数
LR =0.001
Batch_Size = 32
Epochs = 12
#生成训练数据
x = torch.unsqueeze(torch.linspace(-1,1,1000),dim=1)
y = x.pow(2) + 0.1 * torch.normal(torch.zeros(*x.size()))
torch_dataset = Data.TensorDataset(x,y)
loader = Data.DataLoader(dataset=torch_dataset,batch_size=Batch_Size,shuffle=True)
class Net2(torch.nn.Module):
def __init__(self):
super(Net2,self).__init__()
self.hidden = torch.nn.Linear(1,20)
self.predict = torch.nn.Linear(20,1)
#前向传递
def forward(self,x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net_SGD = Net2()
net_Momentum =Net2()
net_RMSprop = Net2()
net_Adam = Net2()
nets = [net_SGD,net_Momentum,net_RMSprop,net_Adam]
opt_SGD = torch.optim.SGD(net_SGD.parameters(),lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(),lr=LR,momentum=0.9)
opt_RMSProp = torch.optim.RMSprop(net_RMSprop.parameters(),lr=LR,alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(),lr=LR,betas=(0.9,0.99))
optimizers = [opt_SGD,opt_Momentum,opt_RMSProp,opt_Adam]
loss_func = torch.nn.MSELoss()
loss_his = [[],[],[],[]]
for epoch in range(Epochs):
for step,(batch_x,batch_y) in enumerate(loader):
for net,opt,l_his in zip(nets,optimizers,loss_his):
output = net(batch_x)
loss = loss_func(output,batch_y)
opt.zero_grad()
loss.backward()
opt.step()
l_his.append(loss.data.numpy()) #loss recoder
labels = ['SGD','Momentum','RMsprop','Adam']
for i ,l_his in enumerate(loss_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()
边栏推荐
- PHP - whether the setting error displays -php xxx When PHP executes, there is no code exception prompt
- Correspondence between STM32 model and contex M
- 使用lambda在循环中传参时,参数总为同一个值
- Solution of deleting path variable by mistake
- yarn安装与使用
- JS array + array method reconstruction
- 误删Path变量解决
- [Blue Bridge Cup 2017 preliminary] buns make up
- Basic use of pytest
- Word typesetting (subtotal)
猜你喜欢
Machine learning notes week02 convolutional neural network
wangeditor富文本引用、表格使用问题
Variable star user module
机器学习--决策树(sklearn)
Vs2019 first MFC Application
Correspondence between STM32 model and contex M
2019 Tencent summer intern formal written examination
mysql实现读写分离
Nanny level problem setting tutorial
Learn winpwn (3) -- sEH from scratch
随机推荐
搞笑漫画:程序员的逻辑
nodejs 详解
yarn安装与使用
Mall project -- day09 -- order module
Apprentissage automatique - - régression linéaire (sklearn)
【CDH】CDH/CDP 环境修改 cloudera manager默认端口7180
jS数组+数组方法重构
数据库面试常问的一些概念
4. Install and deploy spark (spark on Yan mode)
【CDH】CDH5.16 配置 yarn 任务集中分配设置不生效问题
Codeforces Round #771 (Div. 2)
Face recognition_ recognition
ES6 promise object
Détails du Protocole Internet
Dependency in dependencymanagement cannot be downloaded and red is reported
【presto】presto 参数配置优化
MongoDB
Software I2C based on Hal Library
Mysql的索引实现之B树和B+树
Small L's test paper