当前位置:网站首页>paddle入门-使用LeNet在MNIST实现图像分类方法一
paddle入门-使用LeNet在MNIST实现图像分类方法一
2022-07-07 22:06:00 【Vertira】
MNIST数据集实现图像分类
一、配置环境
import paddle
print(paddle.__version__)
如何配置paddle 可以网上搜 ,我的博客也有 ,这里略
加载数据:方式有两种:自定义数据加载(我之前的博客有),加载paddled官网做好的数据
我们寻找第二种方式,因为方便
手写数字的MNIST数据集,包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到1。该数据集的官方地址为:http://yann.lecun.com/exdb/mnist 。
我们使用飞桨框架自带的 paddle.vision.datasets.MNIST
完成mnist数据集的加载。
from paddle.vision.transforms import Compose, Normalize
transform = Compose([Normalize(mean=[127.5],
std=[127.5],
data_format='CHW')])
# 使用transform对数据集做归一化
print('download training data and load training data')
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
print('load finished')
取训练集中的一条数据看一下。
import numpy as np
import matplotlib.pyplot as plt
train_data0, train_label_0 = train_dataset[0][0],train_dataset[0][1]
train_data0 = train_data0.reshape([28,28])
plt.figure(figsize=(2,2))
plt.imshow(train_data0, cmap=plt.cm.binary)
print('train_data0 label is: ' + str(train_label_0))
三 、组网
用paddle.nn下的API,如Conv2D
、MaxPool2D
、Linear
完成LeNet的构建。
import paddle
import paddle.nn.functional as F
class LeNet(paddle.nn.Layer):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = paddle.nn.Conv2D(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2)
self.max_pool1 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.conv2 = paddle.nn.Conv2D(in_channels=6, out_channels=16, kernel_size=5, stride=1)
self.max_pool2 = paddle.nn.MaxPool2D(kernel_size=2, stride=2)
self.linear1 = paddle.nn.Linear(in_features=16*5*5, out_features=120)
self.linear2 = paddle.nn.Linear(in_features=120, out_features=84)
self.linear3 = paddle.nn.Linear(in_features=84, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.max_pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.max_pool2(x)
x = paddle.flatten(x, start_axis=1,stop_axis=-1)
x = self.linear1(x)
x = F.relu(x)
x = self.linear2(x)
x = F.relu(x)
x = self.linear3(x)
return x
四、方式1:基于高层API,完成模型的训练与预测
通过paddle提供的Model
构建实例,使用封装好的训练与测试接口,快速完成模型训练与测试。
4.1 使用 Model.fit
来训练模型
from paddle.metric import Accuracy
model = paddle.Model(LeNet()) # 用Model封装模型
optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
# 配置模型
model.prepare(
optim,
paddle.nn.CrossEntropyLoss(),
Accuracy()
)
# 训练模型
model.fit(train_dataset,
epochs=2,
batch_size=64,
verbose=1
)
训练结果
The loss value printed in the log is the current step, and the metric is the average value of previous steps.
Epoch 1/2
step 938/938 [==============================] - loss: 0.0329 - acc: 0.9399 - 10ms/step
Epoch 2/2
step 938/938 [==============================] - loss: 0.0092 - acc: 0.9798 - 10ms/step
4.2 使用 Model.evaluate
来预测模型
model.evaluate(test_dataset, batch_size=64, verbose=1)
Eval begin...
step 157/157 [==============================] - loss: 4.4728e-04 - acc: 0.9857 - 8ms/step
Eval samples: 10000
{'loss': [0.0004472804], 'acc': 0.9857}
方式一结束
以上就是方式一,可以快速、高效的完成网络模型训练与预测。
参考:
边栏推荐
- 52岁的周鸿祎,还年轻吗?
- Introduction to programming hardware
- Basic learning of SQL Server -- creating databases and tables with code
- ROS from entry to mastery (IX) initial experience of visual simulation: turtlebot3
- Go learning notes (2) basic types and statements (1)
- Cmake learning notes (1) compile single source programs with cmake
- Traduction gratuite en un clic de plus de 300 pages de documents PDF
- Introduction knowledge system of Web front-end engineers
- 面试题详解:用Redis实现分布式锁的血泪史
- HDU - 1260 tickets (linear DP)
猜你喜欢
ROS从入门到精通(九) 可视化仿真初体验之TurtleBot3
52歲的周鴻禕,還年輕嗎?
SQL knowledge summary 004: Postgres terminal command summary
ROS from entry to mastery (IX) initial experience of visual simulation: turtlebot3
【编程题】【Scratch二级】2019.09 制作蝙蝠冲关游戏
快速上手使用本地测试工具postman
35岁那年,我做了一个面临失业的决定
QT and OpenGL: loading 3D models using the open asset import library (assimp) - Part 2
How does starfish OS enable the value of SFO in the fourth phase of SFO destruction?
The function is really powerful!
随机推荐
Robomaster visual tutorial (1) camera
[question de programmation] [scratch niveau 2] oiseaux volants en décembre 2019
【史上最详细】信贷中逾期天数统计说明
[leetcode] 20. Valid brackets
Database interview questions + analysis
【编程题】【Scratch二级】2019.03 垃圾分类
自动化测试:Robot FrameWork框架90%的人都想知道的实用技巧
Go learning notes (2) basic types and statements (1)
Resolve the URL of token
FFA与ICGA造影
Opengl3.3 mouse picking up objects
Stm32f1 and stm32cubeide programming example - rotary encoder drive
The function is really powerful!
【编程题】【Scratch二级】2019.12 绘制十个正方形
Robomaster visual tutorial (11) summary
PostGIS learning
limit 与offset的用法(转载)
2022.7.7-----leetcode. six hundred and forty-eight
Is 35 really a career crisis? No, my skills are accumulating, and the more I eat, the better
[path planning] use the vertical distance limit method and Bessel to optimize the path of a star