当前位置:网站首页>[the Nine Yang Manual] 2017 Fudan University Applied Statistics real problem + analysis
[the Nine Yang Manual] 2017 Fudan University Applied Statistics real problem + analysis
2022-07-06 13:30:00 【Elder martial brother statistics】
Catalog
The real part
One 、(30 branch ) A term is used to explain
(1)(5 branch ) Sample mean 、 Sample variance ;
(2)(5 branch ) statistic ;
(3)(5 branch ) Order statistics ;
(4)(5 branch ) Median 、 Sample median ;
(5)(5 branch ) Empirical distribution function ;
(6)(5 branch ) Unbiased estimate .
Two 、(20 branch ) X 1 , X 2 , X_{1}, X_{2}, X1,X2, i.i.d ∼ Exp ( 1 ) , \sim \operatorname{Exp}(1), ∼Exp(1), seek
(1)(10 branch ) X 1 X 1 + X 2 \frac{X_{1}}{X_{1}+X_{2}} X1+X2X1 Density function of ;
(2)(10 branch ) X ( 2 ) − X ( 1 ) X_{(2)}-X_{(1)} X(2)−X(1) Density function of .
3、 ... and 、(20 branch ) X 1 , X 2 X_{1}, X_{2} X1,X2 i.i.d. ∼ N ( 0 , 1 ) , \sim N(0,1), ∼N(0,1), seek X 1 X 2 \frac{X_{1}}{X_{2}} X2X1 Probability distribution of .
Four 、(20 branch ) X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,…,Xn i.i.d. ∼ F ( x ) , \sim F(x), ∼F(x), remember Y n ( x ) = ∑ i = 1 n I [ X i ≤ x ] , Y_{n}(x)=\sum_{i=1}^{n} I\left[X_{i} \leq x\right], Yn(x)=∑i=1nI[Xi≤x], seek lim n → ∞ Y n ( x ) n \lim _{n \rightarrow \infty} \frac{Y_{n}(x)}{n} limn→∞nYn(x).
5、 ... and 、(20 branch ) X 0 , X 1 , ⋯ , X 2 n , X_{0}, X_{1}, \cdots, X_{2 n}, X0,X1,⋯,X2n, i.i.d ∼ U ( 0 , 1 ) , X ( 0 ) , X ( 1 ) , ⋯ , X ( 2 n ) \sim U(0,1), \quad X_{(0)}, X_{(1)}, \cdots, X_{(2 n)} ∼U(0,1),X(0),X(1),⋯,X(2n) Is the corresponding order statistic , Try to prove X ( n ) → P 1 2 X_{(n)} \stackrel{P}{\rightarrow} \frac{1}{2} X(n)→P21.
6、 ... and 、(20 branch ) Continuous random variables are known X X X The expectations of the E X E X EX There is , f ( t ) = E ∣ X − t ∣ f(t)=E|X-t| f(t)=E∣X−t∣ stay t = m t=m t=m Take the minimum value , prove P ( X ≤ m ) = 1 2 P(X \leq m)=\frac{1}{2} P(X≤m)=21.
7、 ... and 、(20 branch ) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3 i.i.d ∼ N ( 0 , 1 ) , \sim N(0,1), ∼N(0,1), seek
(1)(10 branch ) P ( X 1 > X 2 > X 3 ) P\left(X_{1}>X_{2}>X_{3}\right) P(X1>X2>X3);
(2)(10 branch ) P ( X 1 > X 2 , X 1 > X 3 ) P\left(X_{1}>X_{2}, X_{1}>X_{3}\right) P(X1>X2,X1>X3).
The analysis part
One 、(30 branch ) A term is used to explain
(1)(5 branch ) Sample mean 、 Sample variance ;
(2)(5 branch ) statistic ;
(3)(5 branch ) Order statistics ;
(4)(5 branch ) Median 、 Sample median ;
(5)(5 branch ) Empirical distribution function ;
(6)(5 branch ) Unbiased estimate .
Solution: (1) The sample mean is taken from a specific population n n n Independent random samples , Calculated average , Write it down as X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} Xˉ=n1∑i=1nXi, If the overall expectation exists , be X ˉ \bar{X} Xˉ It is a strong consistent estimate of the overall expectation . The sample variance is based on this n n n The square of the corrected mean deviation calculated from independent random samples , Correction means that the average is divided by its degrees of freedom n − 1 n-1 n−1 Not the number of data n n n, The sample variance is generally recorded as S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} S2=n−11∑i=1n(Xi−Xˉ)2, If the variance of the population exists , be S 2 S^{2} S2 It is also a strong consistent estimate of the population variance .
(2) A statistic is a function whose expression contains only samples but no unknown parameters , It is essentially a random variable ( vector ), Of course, when the value of random samples is given , Statistics can also be regarded as a known constant ( Constant vector ), At this time, the statistic is “ Observations of Statistics ” For short .
(3) Order statistics refers to random samples X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,…,Xn Rearrange the statistics from small to large , Generally, it is written from small to large X ( 1 ) , X ( 2 ) , … , X ( n ) X_{(1)}, X_{(2)}, \ldots, X_{(n)} X(1),X(2),…,X(n).
(4) If x 0.5 x_{0.5} x0.5 Satisfy P { X ≤ x 0.5 } = 0.5 P\left\{X \leq x_{0.5}\right\}=0.5 P{ X≤x0.5}=0.5 said x 0.5 x_{0.5} x0.5 Is the median . And the median of the sample m 0.5 m_{0.5} m0.5 It refers to the number in the middle of the random sample , If expressed in order statistics, it is m 0.5 = { x ( n + 1 2 ) , n = Odd number , x ( n 2 ) + x ( n 2 + 1 ) 2 , n = even numbers . m_{0.5}= \begin{cases}x_{\left(\frac{n+1}{2}\right)}, & n=\text { Odd number , } \\ \frac{x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n}{2}+1\right)}}{2}, & n=\text { even numbers . }\end{cases} m0.5=⎩⎨⎧x(2n+1),2x(2n)+x(2n+1),n= Odd number , n= even numbers .
(5) Empirical distribution function is an estimate of the overall distribution function based on sample information , Write it down as F n ( x ) = 1 n ∑ i = 1 n I [ X i ≤ x ] , F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} I\left[X_{i} \leq x\right], Fn(x)=n1i=1∑nI[Xi≤x], according to Glivenko-Cantelli Theorem , The empirical distribution function is a uniformly strong consistent estimate of the population distribution function , namely sup x ∣ F n ( x ) − F ( x ) ∣ * a . s . 0. \sup _{x}\left|F_{n}(x)-F(x)\right| \stackrel{a . s .}{\longrightarrow} 0 . xsup∣Fn(x)−F(x)∣*a.s.0. (6) If g ^ ( X 1 , … , X n ) \hat{g}\left(X_{1}, \ldots, X_{n}\right) g^(X1,…,Xn) Satisfy E g ^ ( X 1 , … , X n ) = g ( θ ) E \hat{g}\left(X_{1}, \ldots, X_{n}\right)=g(\theta) Eg^(X1,…,Xn)=g(θ), said g ^ \hat{g} g^ yes g g g Unbiased estimation of , Unbiasedness is a A very important good standard , But it's not necessary , As if E X E X EX There is , A random sample X 1 X_{1} X1 Always an unbiased estimate of overall expectations , But you can hardly say that it is a good estimate .
Two 、(20 branch ) X 1 , X 2 , X_{1}, X_{2}, X1,X2, i.i.d ∼ Exp ( 1 ) , \sim \operatorname{Exp}(1), ∼Exp(1), seek
(1)(10 branch ) X 1 X 1 + X 2 \frac{X_{1}}{X_{1}+X_{2}} X1+X2X1 Density function of ;
(2)(10 branch ) X ( 2 ) − X ( 1 ) X_{(2)}-X_{(1)} X(2)−X(1) Density function of .
Solution: (1) According to the meaning , 2 X 1 ∼ χ 2 ( 2 ) , 2 X 2 ∼ χ 2 ( 2 ) 2 X_{1} \sim \chi^{2}(2), 2 X_{2} \sim \chi^{2}(2) 2X1∼χ2(2),2X2∼χ2(2) And independent of each other , so X 1 X 1 + X 2 = 2 X 1 2 X 1 + 2 X 2 ∼ Beta ( 1 , 1 ) \frac{X_{1}}{X_{1}+X_{2}}=\frac{2 X_{1}}{2 X_{1}+2 X_{2}} \sim \operatorname{Beta}(1,1) X1+X2X1=2X1+2X22X1∼Beta(1,1), The density function is f ( x ) = 1 , 0 < x < 1 f(x)=1,0<x<1 f(x)=1,0<x<1, namely U ( 0 , 1 ) U(0,1) U(0,1).
(2) It's easy to see X ( 2 ) − X ( 1 ) = ∣ X 1 − X 2 ∣ X_{(2)}-X_{(1)}=\left|X_{1}-X_{2}\right| X(2)−X(1)=∣X1−X2∣, According to the convolution formula Y = X 1 − X 2 Y=X_{1}-X_{2} Y=X1−X2 The density function of is f ( y ) = { 1 2 e − y , y ≥ 0 1 2 e y , y < 0 f(y)= \begin{cases}\frac{1}{2} e^{-y}, & y \geq 0 \\ \frac{1}{2} e^{y}, & y<0\end{cases} f(y)={ 21e−y,21ey,y≥0y<0 so ∣ Y ∣ |Y| ∣Y∣ The density function of is f ( x ) = e − y , y ≥ 0 f(x)=e^{-y}, y \geq 0 f(x)=e−y,y≥0.
[ notes ] if X ∼ χ 2 ( m ) , Y ∼ χ 2 ( n ) X \sim \chi^{2}(m), Y \sim \chi^{2}(n) X∼χ2(m),Y∼χ2(n), And independent of each other , be X X + Y ∼ Beta ( m 2 , n 2 ) . \frac{X}{X+Y} \sim \operatorname{Beta}\left(\frac{m}{2}, \frac{n}{2}\right). X+YX∼Beta(2m,2n). The analysis is as follows : remember U = X X + Y , V = X + Y U=\frac{X}{X+Y}, V=X+Y U=X+YX,V=X+Y, After inverse solution x = u v , y = v − u v x=u v, y=v-u v x=uv,y=v−uv, ∣ J ∣ = ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ = ∣ v u − v 1 − u ∣ = v , |J|=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{cc} v & u \\ -v & 1-u \end{array}\right|=v, ∣J∣=∣∣∣∣∂(u,v)∂(x,y)∣∣∣∣=∣∣∣∣v−vu1−u∣∣∣∣=v, therefore f U , V ( u , v ) = v f X , Y ( u v , ( 1 − u ) v ) = u m 2 − 1 ( 1 − u ) n 2 − 1 Γ ( m 2 ) Γ ( n 2 ) ⋅ ( 1 2 ) m + n 2 v m + n 2 − 1 e − v 2 f_{U, V}(u, v)=v f_{X, Y}(u v,(1-u) v)=\frac{u^{\frac{m}{2}-1}(1-u)^{\frac{n}{2}-1}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} \cdot\left(\frac{1}{2}\right)^{\frac{m+n}{2}} v^{\frac{m+n}{2}-1} e^{-\frac{v}{2}} fU,V(u,v)=vfX,Y(uv,(1−u)v)=Γ(2m)Γ(2n)u2m−1(1−u)2n−1⋅(21)2m+nv2m+n−1e−2v, so f U ( u ) = ∫ 0 + ∞ f U , V ( u , v ) d v = Γ ( m + n 2 ) Γ ( m 2 ) Γ ( n 2 ) u m 2 − 1 ( 1 − u ) n 2 − 1 ∼ Beta ( m 2 , n 2 ) . f_{U}(u)=\int_{0}^{+\infty} f_{U, V}(u, v) d v=\frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)} u^{\frac{m}{2}-1}(1-u)^{\frac{n}{2}-1} \sim \operatorname{Beta}\left(\frac{m}{2}, \frac{n}{2}\right). fU(u)=∫0+∞fU,V(u,v)dv=Γ(2m)Γ(2n)Γ(2m+n)u2m−1(1−u)2n−1∼Beta(2m,2n).
3、 ... and 、(20 branch ) X 1 , X 2 X_{1}, X_{2} X1,X2 i.i.d ∼ N ( 0 , 1 ) , \sim N(0,1), ∼N(0,1), seek X 1 X 2 \frac{X_{1}}{X_{2}} X2X1 Probability distribution of .
Solution: Due to denominator X 2 X_{2} X2 The distribution of is about 0 symmetry , therefore X 1 ∣ X 2 ∣ \frac{X_{1}}{\left|X_{2}\right|} ∣X2∣X1 And X 1 X 2 \frac{X_{1}}{X_{2}} X2X1 Homodistribution , And obviously N ( 0 , 1 ) χ 2 ( 1 ) 1 \frac{N(0,1)}{\sqrt{\frac{\chi^{2}(1)}{1}}} 1χ2(1)N(0,1) Is a degree of freedom 1 Of t t t Distribution , therefore X 1 ∣ X 2 ∣ \frac{X_{1}}{\left|X_{2}\right|} ∣X2∣X1 Also, the degree of freedom is 1 Of t t t Distribution , Its probability density is f ( x ) = Γ ( 1 ) π Γ ( 1 2 ) ( x 2 + 1 ) − 1 = 1 π ⋅ 1 1 + x 2 , − ∞ < x < + ∞ , f(x)=\frac{\Gamma(1)}{\sqrt{\pi} \Gamma\left(\frac{1}{2}\right)}\left(x^{2}+1\right)^{-1}=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<+\infty, f(x)=πΓ(21)Γ(1)(x2+1)−1=π1⋅1+x21,−∞<x<+∞, The standard Cauchy distribution .
Four 、(20 branch ) X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,…,Xn i.i.d ∼ F ( x ) , \sim F(x), ∼F(x), remember Y n ( x ) = ∑ i = 1 n I [ X i ≤ x ] , Y_{n}(x)=\sum_{i=1}^{n} I\left[X_{i} \leq x\right], Yn(x)=∑i=1nI[Xi≤x], seek lim n → ∞ Y n ( x ) n \lim _{n \rightarrow \infty} \frac{Y_{n}(x)}{n} limn→∞nYn(x).
Solution: According to the strong law of numbers , lim n → ∞ Y n ( x ) n = E I [ X 1 ≤ x ] = P ( X 1 ≤ x ) = F ( x ) \lim _{n \rightarrow \infty} \frac{Y_{n}(x)}{n}=E I\left[X_{1} \leq x\right]=P\left(X_{1} \leq x\right)=F(x) limn→∞nYn(x)=EI[X1≤x]=P(X1≤x)=F(x), a.s.
5、 ... and 、(20 branch ) X 0 , X 1 , ⋯ , X 2 n , X_{0}, X_{1}, \cdots, X_{2 n}, X0,X1,⋯,X2n, i.i.d ∼ U ( 0 , 1 ) , X ( 0 ) , X ( 1 ) , ⋯ , X ( 2 n ) \sim U(0,1), \quad X_{(0)}, X_{(1)}, \cdots, X_{(2 n)} ∼U(0,1),X(0),X(1),⋯,X(2n) Is the corresponding order statistic , Try to prove X ( n ) → P 1 2 X_{(n)} \stackrel{P}{\rightarrow} \frac{1}{2} X(n)→P21.
Solution: So let's calculate Y = X ( n ) Y=X_{(n)} Y=X(n) Density function of , Thought is : from X 0 , X 1 , ⋯ , X 2 n X_{0}, X_{1}, \cdots, X_{2 n} X0,X1,⋯,X2n Choose one of them as Y Y Y, be left over There should be n n n Ratio Y Y Y Small , n n n Ratio Y Y Y Big , Of course, there are ( 2 n + 1 ) ! n ! ⋅ 1 ! ⋅ n ! \frac{(2 n+1) !}{n ! \cdot 1 ! \cdot n !} n!⋅1!⋅n!(2n+1)! Kind of , therefore
f ( y ) = ( 2 n + 1 ) ! n ! n ! P { X 0 ≤ y , X 1 ≤ y , … , X n − 1 ≤ y } f X n ( y ) P { X n + 1 > y , … , X 2 n > y } P { X 0 ≤ y , X 1 ≤ y , … , X n − 1 ≤ y } = P n { X 0 ≤ y } = y n , P { X n + 1 > y , … , X 2 n > y } = P n { X 2 n > y } = ( 1 − y ) n , \begin{gathered} f(y)=\frac{(2 n+1) !}{n ! n !} P\left\{X_{0} \leq y, X_{1} \leq y, \ldots, X_{n-1} \leq y\right\} f_{X_{n}}(y) P\left\{X_{n+1}>y, \ldots, X_{2 n}>y\right\}\\ P\left\{X_{0} \leq y, X_{1} \leq y, \ldots, X_{n-1} \leq y\right\}=P^{n}\left\{X_{0} \leq y\right\}=y^{n}, \\ P\left\{X_{n+1}>y, \ldots, X_{2 n}>y\right\}=P^{n}\left\{X_{2 n}>y\right\}=(1-y)^{n}, \end{gathered} f(y)=n!n!(2n+1)!P{ X0≤y,X1≤y,…,Xn−1≤y}fXn(y)P{ Xn+1>y,…,X2n>y}P{ X0≤y,X1≤y,…,Xn−1≤y}=Pn{ X0≤y}=yn,P{ Xn+1>y,…,X2n>y}=Pn{ X2n>y}=(1−y)n, so f ( y ) = Γ ( 2 n + 2 ) Γ ( n + 1 ) Γ ( n + 1 ) y n ( 1 − y ) n , 0 < y < 1 f(y)=\frac{\Gamma(2 n+2)}{\Gamma(n+1) \Gamma(n+1)} y^{n}(1-y)^{n}, 0<y<1 f(y)=Γ(n+1)Γ(n+1)Γ(2n+2)yn(1−y)n,0<y<1, This is a Beta ( n + 1 , n + 1 ) \operatorname{Beta}(n+1, n+1) Beta(n+1,n+1) Distribution function of . according to Beta The nature of the distribution , E Y = n + 1 2 n + 2 = 1 2 , Var ( Y ) = ( n + 1 ) 2 ( 2 n + 2 ) 2 ( 2 n + 3 ) → 0 , E Y=\frac{n+1}{2 n+2}=\frac{1}{2},\quad \operatorname{Var}(Y)=\frac{(n+1)^{2}}{(2 n+2)^{2}(2 n+3)} \rightarrow 0, EY=2n+2n+1=21,Var(Y)=(2n+2)2(2n+3)(n+1)2→0, Using Chebyshev inequality , P { ∣ Y − 1 2 ∣ > ε } ≤ Var ( Y ) ε 2 → 0 P\left\{\left|Y-\frac{1}{2}\right|>\varepsilon\right\} \leq \frac{\operatorname{Var}(Y)}{\varepsilon^{2}} \rightarrow 0 P{ ∣∣Y−21∣∣>ε}≤ε2Var(Y)→0, therefore X ( n ) → P 1 2 X_{(n)} \stackrel{P}{\rightarrow} \frac{1}{2} X(n)→P21.
6、 ... and 、(20 branch ) Continuous random variables are known X X X The expectations of the E X E X EX There is , f ( t ) = E ∣ X − t ∣ f(t)=E|X-t| f(t)=E∣X−t∣ stay t = m t=m t=m Take the minimum value , prove P ( X ≤ m ) = 1 2 P(X \leq m)=\frac{1}{2} P(X≤m)=21.
Solution: set up X X X The distribution function of F ( x ) F(x) F(x), The MI degree function is p ( x ) p(x) p(x), be f ( t ) = ∫ − ∞ t ( t − x ) d F ( x ) + ∫ t + ∞ ( x − t ) d F ( x ) = t F ( t ) − ∫ − ∞ t x d F ( x ) + ∫ t + ∞ x d F ( x ) − t ( 1 − F ( t ) ) , f(t)=\int_{-\infty}^{t}(t-x) d F(x)+\int_{t}^{+\infty}(x-t) d F(x)=t F(t)-\int_{-\infty}^{t} x d F(x)+\int_{t}^{+\infty} x d F(x)-t(1-F(t)), f(t)=∫−∞t(t−x)dF(x)+∫t+∞(x−t)dF(x)=tF(t)−∫−∞txdF(x)+∫t+∞xdF(x)−t(1−F(t)), Yes t t t Derivation , have to f ′ ( t ) = F ( t ) + t p ( t ) − t p ( t ) − t p ( t ) − 1 + F ( t ) + t p ( t ) = 2 F ( t ) − 1 , f^{\prime}(t)=F(t)+t p(t)-t p(t)-t p(t)-1+F(t)+t p(t)=2 F(t)-1, f′(t)=F(t)+tp(t)−tp(t)−tp(t)−1+F(t)+tp(t)=2F(t)−1, Make f ′ ( t ) = 0 f^{\prime}(t)=0 f′(t)=0, Solution t = x 0.5 ( x a t=x_{0.5} \left(x_{a}\right. t=x0.5(xa Indicates that it is satisfied F ( x a ) = a ) \left.F\left(x_{a}\right)=a\right) F(xa)=a). The second derivative f ′ ′ ( t ) = 2 p ( t ) ≥ 0 f^{\prime \prime}(t)=2 p(t) \geq 0 f′′(t)=2p(t)≥0, Therefore, the stagnation point is the minimum point . According to the meaning m = x 0.5 m=x_{0.5} m=x0.5, so P ( X ≤ m ) = 1 2 . P(X \leq m)=\frac{1}{2} . P(X≤m)=21.
7、 ... and 、(20 branch ) X 1 , X 2 , X 3 , X_{1}, X_{2}, X_{3}, X1,X2,X3, i.i.d ∼ N ( 0 , 1 ) , \sim N(0,1), ∼N(0,1), seek
(1)(10 branch ) P ( X 1 > X 2 > X 3 ) P\left(X_{1}>X_{2}>X_{3}\right) P(X1>X2>X3);
(2)(10 branch ) P ( X 1 > X 2 , X 1 > X 3 ) P\left(X_{1}>X_{2}, X_{1}>X_{3}\right) P(X1>X2,X1>X3).
Solution: (1) According to the rotation symmetry , P ( X 1 > X 2 > X 3 ) = P ( X 1 > X 3 > X 2 ) = P ( X 2 > X 1 > X 3 ) = P ( X 2 > X 3 > X 1 ) = P ( X 3 > X 1 > X 2 ) = P ( X 3 > X 2 > X 1 ) \begin{aligned} & P\left(X_{1}>X_{2}>X_{3}\right)=P\left(X_{1}>X_{3}>X_{2}\right)=P\left(X_{2}>X_{1}>X_{3}\right) \\ =& P\left(X_{2}>X_{3}>X_{1}\right)=P\left(X_{3}>X_{1}>X_{2}\right)=P\left(X_{3}>X_{2}>X_{1}\right) \end{aligned} =P(X1>X2>X3)=P(X1>X3>X2)=P(X2>X1>X3)P(X2>X3>X1)=P(X3>X1>X2)=P(X3>X2>X1) These events are disjoint , And the probability of these events is 1 Events , so 6 P ( X 1 > X 2 > X 3 ) = 1 ⇒ P ( X 1 > X 2 > X 3 ) = 1 6 . 6 P\left(X_{1}>X_{2}>X_{3}\right)=1 \Rightarrow P\left(X_{1}>X_{2}>X_{3}\right)=\frac{1}{6} . 6P(X1>X2>X3)=1⇒P(X1>X2>X3)=61. (2) We found that :
P ( X 1 > X 2 , X 1 > X 3 ) = P ( X 1 = max { X 1 , X 2 , X 3 } ) , P\left(X_{1}>X_{2}, X_{1}>X_{3}\right)=P\left(X_{1}=\max \left\{X_{1}, X_{2}, X_{3}\right\}\right), P(X1>X2,X1>X3)=P(X1=max{ X1,X2,X3}), According to the rotation symmetry , P ( X 1 = max { X 1 , X 2 , X 3 } ) = P ( X 2 = max { X 1 , X 2 , X 3 } ) = P ( X 3 = max { X 1 , X 2 , X 3 } ) , P\left(X_{1}=\max \left\{X_{1}, X_{2}, X_{3}\right\}\right)=P\left(X_{2}=\max \left\{X_{1}, X_{2}, X_{3}\right\}\right)=P\left(X_{3}=\max \left\{X_{1}, X_{2}, X_{3}\right\}\right), P(X1=max{ X1,X2,X3})=P(X2=max{ X1,X2,X3})=P(X3=max{ X1,X2,X3}),so P ( X 1 > X 2 , X 1 > X 3 ) = 1 3 P\left(X_{1}>X_{2}, X_{1}>X_{3}\right)=\frac{1}{3} P(X1>X2,X1>X3)=31.
边栏推荐
- Application architecture of large live broadcast platform
- 学编程的八大电脑操作,总有一款你不会
- View UI plus releases version 1.1.0, supports SSR, supports nuxt, and adds TS declaration files
- Mortal immortal cultivation pointer-1
- 凡人修仙学指针-1
- List set map queue deque stack
- Branch and loop statements
- 9. Pointer (upper)
- Inheritance and polymorphism (I)
- (super detailed II) detailed visualization of onenet data, how to plot with intercepted data flow
猜你喜欢

Alibaba cloud microservices (I) service registry Nacos, rest template and feign client

5. Function recursion exercise

C语言入门指南

MySQL Database Constraints

There is always one of the eight computer operations that you can't learn programming

Abstract classes and interfaces

西安电子科技大学22学年上学期《基础实验》试题及答案

最新坦克大战2022-全程开发笔记-2

Tyut Taiyuan University of technology 2022 "Mao Gai" must be recited

(super detailed II) detailed visualization of onenet data, how to plot with intercepted data flow
随机推荐
(super detailed II) detailed visualization of onenet data, how to plot with intercepted data flow
Design a key value cache to save the results of the most recent Web server queries
5.函数递归练习
Rich Shenzhen people and renting Shenzhen people
Caching mechanism of leveldb
Tyut Taiyuan University of technology 2022 introduction to software engineering examination question outline
1.C语言初阶练习题(1)
2.C语言初阶练习题(2)
分支语句和循环语句
7. Relationship between array, pointer and array
3. C language uses algebraic cofactor to calculate determinant
Implement queue with stack
C语言入门指南
162. Find peak - binary search
Network layer 7 protocol
[Topic terminator]
TYUT太原理工大学2022软工导论考试题型大纲
View UI plus released version 1.2.0 and added image, skeleton and typography components
Aurora system model of learning database
List set map queue deque stack