当前位置:网站首页>math_极限&微分&导数&微商/对数函数的导函数推导(导数定义极限法)/指数函数求导公式推导(反函数求导法则/对数求导法)
math_极限&微分&导数&微商/对数函数的导函数推导(导数定义极限法)/指数函数求导公式推导(反函数求导法则/对数求导法)
2022-07-06 03:47:00 【xuchaoxin1375】
微分&导数&微商
函数在 x = x 0 x=x_0 x=x0导数的定义
- 定义两点
A x 0 ( x 0 , f ( x 0 ) ) ; ( 指 定 x = x 0 处 的 极 限 ) B x = ( x , f ( x ) ) = ( x 0 + Δ x , f ( x 0 + Δ x ) ) { Δ x = x − x 0 Δ y = { f ( x ) − f ( x 0 ) f ( x 0 + Δ x ) − f ( x 0 ) x → x 0 * Δ x → 0 有 时 , 也 记 h = Δ x A_{x_0}(x_0,f(x_0));(指定x=x_0处的极限) \\ B_x=(x,f(x))=(x_0+\Delta x,f(x_0+\Delta x)) \\ \begin{cases} \Delta x=x-x_0 \\ \Delta y= \begin{cases} f(x)-f(x_0) \\ f(x_0+\Delta x)-f(x_0) \end{cases} \end{cases} \\ x\rightarrow x_0 \Longleftrightarrow \Delta x\rightarrow 0 \\有时,也记h=\Delta x Ax0(x0,f(x0));(指定x=x0处的极限)Bx=(x,f(x))=(x0+Δx,f(x0+Δx))⎩⎪⎨⎪⎧Δx=x−x0Δy={ f(x)−f(x0)f(x0+Δx)−f(x0)x→x0*Δx→0有时,也记h=Δx
lim Δ x → 0 Δ y Δ x = { lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 lim h → 0 f ( x 0 + h ) − f ( x 0 ) h \lim_{\Delta x\rightarrow 0}{\frac{\Delta y}{\Delta x}} =\begin{cases} \lim\limits_{\Delta x\rightarrow 0}{\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}} \\ \lim\limits_{x\rightarrow x_0}{\frac{f(x)-f(x_0)}{x-x_0}} \\ \lim\limits_{h\rightarrow 0}{\frac{f(x_0+h)-f(x_0)}{h} } \end{cases} Δx→0limΔxΔy=⎩⎪⎪⎪⎨⎪⎪⎪⎧Δx→0limΔxf(x0+Δx)−f(x0)x→x0limx−x0f(x)−f(x0)h→0limhf(x0+h)−f(x0)
通常,为了方便书写,经常采用第三中形式进行推导:
f ′ ( x 0 ) = lim h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_0)=\lim\limits_{ h \rightarrow 0}{\frac{f(x_0+h)-f(x_0)}{h} } f′(x0)=h→0limhf(x0+h)−f(x0)
导函数的定义
和导数的定义类似,我们将导数定义中的 x 0 x_0 x0替换为x
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x = lim h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x} =\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h} f′(x)=Δx→0limΔxf(x+Δx)−f(x)=h→0limhf(x+h)−f(x)
记
g ( h ) = f ( x + h ) − f ( x ) h g(h)=\frac{f(x+h)-f(x)}{h} g(h)=hf(x+h)−f(x)则
f ′ ( x ) = lim Δ x → 0 g ( Δ x ) = lim h → 0 g ( h ) 这 里 这 么 写 , 是 为 了 强 调 , 利 用 导 数 定 义 求 导 数 ( 导 函 数 ) 的 时 候 , 被 求 极 限 的 函 数 g ( h ) 的 自 变 量 h ( 即 f ( x ) 自 变 量 x 的 增 量 Δ x ) 与 被 求 导 数 的 f ( x ) 的 自 变 量 x 不 同 f'(x)=\lim_{\Delta x \rightarrow 0}{g(\Delta x)} =\lim_{h \rightarrow 0}{g(h)} \\这里这么写,是为了强调,利用导数定义求导数(导函数)的时候, \\被求极限的函数g(h)的自变量h(即f(x)自变量x的增量\Delta x)与被求导数的f(x)的自变量x不同 f′(x)=Δx→0limg(Δx)=h→0limg(h)这里这么写,是为了强调,利用导数定义求导数(导函数)的时候,被求极限的函数g(h)的自变量h(即f(x)自变量x的增量Δx)与被求导数的f(x)的自变量x不同显然, f ( x ) 在 x 0 处 的 导 数 f ′ ( x 0 ) 就 是 导 函 数 f ′ ( x ) 在 x = x 0 处 的 函 数 值 f(x)在x_0处的导数f'(x_0)就是导函数f'(x)在x=x_0处的函数值 f(x)在x0处的导数f′(x0)就是导函数f′(x)在x=x0处的函数值
- f ′ ( x 0 ) = f ′ ( x ) ∣ x = x 0 = d x d y f'(x_0)=f'(x)|_{x=x_0}=\frac{dx}{dy} f′(x0)=f′(x)∣x=x0=dydx
对数函数的导数推导(导数定义极限法)
f ( x ) = l o g a x f ′ ( x ) = ( l o g a x ) ′ = lim h → 0 l o g a ( x + h ) − l o g a ( x ) h = lim h → 0 l o g a ( x + h x ) h = lim h → 0 1 h l o g a ( x + h x ) = lim h → 0 l o g a ( 1 + h x ) 1 h 记 g ( h ) = l o g a ( 1 + h x ) 1 h ( l o g a x ) ′ = lim h → 0 g ( h ) ; g ( h ) 的 自 变 量 是 h ( g ( h ) 将 x 看 作 常 量 ) 该 极 限 是 1 ∞ 类 型 ; 由 第 二 重 要 极 限 的 推 广 公 式 得 到 : A = lim h → 0 h x 1 h = 1 x 所 以 对 于 u = ϕ ( h ) = ( 1 + h x ) 1 h ; u 0 = lim h → 0 u = e 1 x 又 由 复 合 函 数 的 极 限 运 算 法 则 : lim h → 0 g ( h ) = lim u → u 0 l o g a u = l o g a u 0 = l o g a e 1 x 根 据 换 底 公 式 得 到 ( l o g a x ) ′ = l o g a e 1 x = ln e 1 x ln a = 1 x 1 ln a f(x)=log_a x \\ f'(x)=(log_a x)'=\lim_{h\rightarrow 0}\frac{log_a{(x+h)}-log_a(x)}{h} =\lim_{h\rightarrow 0}\frac{log_a(\frac{x+h}{x})}{h} \\=\lim_{h\rightarrow 0}\frac{1}{h}{log_a({x+h}{x})} \\=\lim_{h\rightarrow 0}{log_a{(1+\frac{h}{x})^{\frac{1}{h}}}} \\记g(h)={log_a{(1+\frac{h}{x})^{\frac{1}{h}}}} \\(log_a x)'=\lim_{h\rightarrow 0}g(h);g(h)的自变量是h(g(h)将x看作常量) \\ 该极限是1^\infin类型; 由第二重要极限的推广公式得到:A=\lim_{h\rightarrow 0}\frac{h}{x}\frac{1}{h}=\frac{1}{x} \\所以对于u=\phi(h)=(1+\frac{h}{x})^{\frac{1}{h}}; \\ u_0=\lim_{h\rightarrow 0}{u}=e^{\frac{1}{x}} \\又由复合函数的极限运算法则: \lim_{h\rightarrow 0}g(h)=\lim_{u\rightarrow u_0}log_a{u}=log_a u_0=log_a e^\frac{1}{x} \\根据换底公式得到(log_a x)'=log_ae^{\frac{1}{x}}=\frac{\ln e^{\frac{1}{x}}}{\ln a}=\frac{1}{x}\frac{1}{\ln a} f(x)=logaxf′(x)=(logax)′=h→0limhloga(x+h)−loga(x)=h→0limhloga(xx+h)=h→0limh1loga(x+hx)=h→0limloga(1+xh)h1记g(h)=loga(1+xh)h1(logax)′=h→0limg(h);g(h)的自变量是h(g(h)将x看作常量)该极限是1∞类型;由第二重要极限的推广公式得到:A=h→0limxhh1=x1所以对于u=ϕ(h)=(1+xh)h1;u0=h→0limu=ex1又由复合函数的极限运算法则:h→0limg(h)=u→u0limlogau=logau0=logaex1根据换底公式得到(logax)′=logaex1=lnalnex1=x1lna1
导数与微分
- 微分是导数的另一种描述形式
- 导数 y ′ = d y d x y'=\frac{dy}{dx} y′=dxdy,(函数的微分dy除以自变量x的微分dx,因而导数也叫做微商)
对数函数的导函数
( l o g a x ) ′ = 1 x ln a (log_ax)'=\frac{1}{x\ln a} (logax)′=xlna1
- 对数函数的导函数可以通过第二重要极限计算得到
反函数求导法
以 a x 的 导 函 数 推 导 为 例 , 利 用 反 函 数 求 导 法 则 以a^x的导函数推导为例,利用反函数求导法则 以ax的导函数推导为例,利用反函数求导法则
直接函数
- x = x ( y ) = l o g a y x , y 取 值 范 围 : y ∈ ( 0 , + ∞ ) x ∈ ( − ∞ , + ∞ ) ( 自 变 量 y 的 ) 函 数 x 的 导 数 : x ′ ( y ) = 1 y 1 ln a x=x(y)=log_ay \\x,y取值范围: \\ y\in (0,+\infin) \\x \in (-\infin,+\infin) \\(自变量y的)函数x的导数: \\x'(y)=\frac{1}{y}\frac{1}{\ln a} \\ x=x(y)=logayx,y取值范围:y∈(0,+∞)x∈(−∞,+∞)(自变量y的)函数x的导数:x′(y)=y1lna1
反函数
- y = y ( x ) = a x * 函 数 x ( y ) 和 函 数 y ( x ) 互 为 反 函 数 y=y(x)=a^x \\ \bigstar函数x(y)和函数y(x)互为反函数 \\ y=y(x)=ax*函数x(y)和函数y(x)互为反函数
反函数的导数
- 则 : y ′ ( x ) = 1 x ′ ( y ) = 1 1 x ln a = x ln a 即 , y ′ ( x ) = ( a x ) ′ = x ln a ∴ ( a x ) ′ = x ln a 则: y'(x)=\frac{1}{x'(y)}=\frac{1}{\frac{1}{x\ln a}}=x\ln a \\即,y'(x)=(a^x)'=x\ln a \\ \therefore (a^x)'=x\ln a 则:y′(x)=x′(y)1=xlna11=xlna即,y′(x)=(ax)′=xlna∴(ax)′=xlna
对数求导法
以 求 a x 的 导 函 数 为 例 , 使 用 对 数 求 导 法 ( 伯 努 利 求 导 法 ) 以求a^x的导函数为例,使用对数求导法(伯努利求导法) 以求ax的导函数为例,使用对数求导法(伯努利求导法)
y = a x ln y = ln a x = x ln a 两 边 同 时 求 导 1 y y ′ = ln a y ′ = y ln a = a x ln a 即 , ( a x ) ′ = a x ln a y=a^x \\ \ln y=\ln a^x=x \ln a \\ 两边同时求导 \\ \frac{1}{y}y'=\ln a \\ y'=y\ln a=a^x \ln a \\ 即,(a^x)'=a^x \ln a y=axlny=lnax=xlna两边同时求导y1y′=lnay′=ylna=axlna即,(ax)′=axlna
边栏推荐
- mysql从一个连续时间段的表中读取缺少数据
- WPF effect Article 191 box selection listbox
- ESP32(基于Arduino)连接EMQX的Mqtt服务器上传信息与命令控制
- C#(三十一)之自定义事件
- Prime protocol announces cross chain interconnection applications on moonbeam
- Schnuka: visual positioning system working principle of visual positioning system
- 施努卡:3d视觉检测应用行业 机器视觉3d检测
- Esbuild & SWC: a new generation of construction tools
- Recommended papers on remote sensing image super-resolution
- 遥感图像超分辨率论文推荐
猜你喜欢
[slam] orb-slam3 parsing - track () (3)
An article will give you a comprehensive understanding of the internal and external components of "computer"
[analysis of variance] single factor analysis and multi factor analysis
[Massey] Massey font format and typesetting requirements
遥感图像超分辨重建综述
2. GPIO related operations
2、GPIO相关操作
1、工程新建
Svg drag point crop image JS effect
C#(三十)之C#comboBox ListView treeView
随机推荐
遥感图像超分辨率论文推荐
Remote Sensing Image Super-resolution and Object Detection: Benchmark and State of the Art
遥感图像超分辨重建综述
C language circular statement
How to standardize the deployment of automated testing?
1、工程新建
Svg drag point crop image JS effect
User experience index system
Prime protocol announces cross chain interconnection applications on moonbeam
2.1 rtthread pin device details
施努卡:3d视觉检测应用行业 机器视觉3d检测
MySQL about self growth
RT-Thread--Lwip之FTP(2)
Quick sort function in C language -- qsort
使用JS完成一个LRU缓存
Why do you want to start pointer compression?
Basic concepts of LTE user experience
Cf603e pastoral oddities [CDQ divide and conquer, revocable and search set]
Introduction to data types in MySQL
自动化测试怎么规范部署?