当前位置:网站首页>Using GPU to train network model

Using GPU to train network model

2022-07-08 01:02:00 booze-J

The network model architecture used in this article :
 Insert picture description here

GPU There are two ways to train :

Mode one

Use gpu Training as long as you find : A network model 、 data ( Enter and label )、 The loss function is called again .cuda() that will do .
CPU Training code :

import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

#  Prepare the dataset 
train_data = torchvision.datasets.CIFAR10(root='./CIFAR10',train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root='./CIFAR10',train=False,transform=torchvision.transforms.ToTensor(),download=True)

# length length 
train_data_size = len(train_data)
test_data_size = len(test_data)
print(" The length of the training data set is :{}".format(train_data_size))
print(" The length of the test data set is :{}".format(test_data_size))

#  utilize dataloader  To load the dataset 
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

#  Create a network model 
#  Building neural networks ( Open a separate file to store the network model )
class Booze(nn.Module):

    def __init__(self):
        super(Booze, self).__init__()
        self.model = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )


    def forward(self,x):
        x = self.model(x)
        return x

obj = Booze()

#  Create a loss function 
loss_fn = nn.CrossEntropyLoss()

#  Define optimizer 
learning_rate = 0.01
optimizer = torch.optim.SGD(obj.parameters(),lr = learning_rate)


#  Set some parameters of the training network 
#  Record the number of workouts 
total_train_step=0
#  Record the number of tests 
total_test_step=0
#  Number of training rounds 
epoch = 10

#  add to tensorboard
writer = SummaryWriter("logs")
start_time = time.time()


for i in range(epoch):
    print("------------- The first {} Round of training begins ------------".format(i+1))
    #  The training steps begin  [train()](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.train)
    obj.train()
    for data in train_dataloader:
        imgs,targets = data
        outputs = obj(imgs)
        #  Calculate the loss between the output value and the target value 
        loss = loss_fn(outputs,targets)

        #  Optimizer optimization model :
        #  Use the optimizer to clear the gradient 
        optimizer.zero_grad()
        #  A gradient of each parameter node is obtained by back propagation 
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step%100==0:
            end_time = time.time()
            print(end_time-start_time)
            print(" Training times :{},Loss:{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    #  The test step begins :
    #  Note that there is no need to tune the model in the process of testing 
    obj.eval()   # [eval()](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.eval)
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs,targets = data
            outputs = obj(imgs)
            loss = loss_fn(outputs,targets)
            total_test_loss+=loss
            accurcay = (outputs.argmax(1)==targets).sum()
            total_accuracy+=accurcay

    print(" On the overall test set Loss:{}".format(total_test_loss))
    print(" Accuracy on the overall test set :{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
    writer.add_scalar('test_loss',total_test_loss,total_test_step)
    total_test_step+=1

    torch.save(obj,"./model/obj_{}.pth".format(i))
    print(" Model saved ")

writer.close()

Code run results :
 Insert picture description here
GPU Training code :

import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

#  Prepare the dataset 
train_data = torchvision.datasets.CIFAR10(root='./CIFAR10',train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10(root='./CIFAR10',train=False,transform=torchvision.transforms.ToTensor(),download=True)

# length length 
train_data_size = len(train_data)
test_data_size = len(test_data)
print(" The length of the training data set is :{}".format(train_data_size))
print(" The length of the test data set is :{}".format(test_data_size))

#  utilize dataloader  To load the dataset 
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)


#  Create a network model 
#  Building neural networks ( Open a separate file to store the network model )
class Booze(nn.Module):

    def __init__(self):
        super(Booze, self).__init__()
        self.model = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )


    def forward(self,x):
        x = self.model(x)
        return x

obj = Booze()
if torch.cuda.is_available():
    #  A network model   call cuda() Method before returning 
    obj = obj.cuda()

#  Create a loss function 
loss_fn = nn.CrossEntropyLoss()
#  Judge first cuda May I use , Then you can move over 
if torch.cuda.is_available():
    #  Loss function   call cuda() Method before returning 
    loss_fn = loss_fn.cuda()

#  Define optimizer 
learning_rate = 0.01
optimizer = torch.optim.SGD(obj.parameters(),lr = learning_rate)


#  Set some parameters of the training network 
#  Record the number of workouts 
total_train_step=0
#  Record the number of tests 
total_test_step=0
#  Number of training rounds 
epoch = 10

#  add to tensorboard
writer = SummaryWriter("logs")
start_time = time.time()


for i in range(epoch):
    print("------------- The first {} Round of training begins ------------".format(i+1))
    #  The training steps begin  [train()](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.train)
    obj.train()
    for data in train_dataloader:
        imgs,targets = data
        if torch.cuda.is_available():
            #  data   call cuda() Method before returning 
            imgs = imgs.cuda()
            #  data   call cuda() Method before returning 
            targets = targets.cuda()
        outputs = obj(imgs)
        #  Calculate the loss between the output value and the target value 
        loss = loss_fn(outputs,targets)

        #  Optimizer optimization model :
        #  Use the optimizer to clear the gradient 
        optimizer.zero_grad()
        #  A gradient of each parameter node is obtained by back propagation 
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step%100==0:
            end_time = time.time()
            print(end_time-start_time)
            print(" Training times :{},Loss:{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    #  The test step begins :
    #  Note that there is no need to tune the model in the process of testing 
    obj.eval()   # [eval()](https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.eval)
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs,targets = data
            if torch.cuda.is_available():
                #  data   call cuda() Method before returning 
                imgs = imgs.cuda()
                #  data   call cuda() Method before returning 
                targets = targets.cuda()
            outputs = obj(imgs)
            loss = loss_fn(outputs,targets)
            total_test_loss+=loss
            accurcay = (outputs.argmax(1)==targets).sum()
            total_accuracy+=accurcay

    print(" On the overall test set Loss:{}".format(total_test_loss))
    print(" Accuracy on the overall test set :{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
    writer.add_scalar('test_loss',total_test_loss,total_test_step)
    total_test_step+=1

    torch.save(obj,"./model/obj_{}.pth".format(i))
    print(" Model saved ")

writer.close()

Code run results :
 Insert picture description here
Compared with CPU Training code ,GPU The training code has made the following changes .
CPU Network model in

#  Creating neural networks 
obj = Booze()

GPU Network model in

obj = Booze()
#  Judge first cuda May I use , Then you can move over 
if torch.cuda.is_available():
    #  A network model   call cuda() Method before returning 
    obj = obj.cuda()

CPU Loss function in

#  Create a loss function 
loss_fn = nn.CrossEntropyLoss()

GPU Loss function in

#  Create a loss function 
loss_fn = nn.CrossEntropyLoss()
#  Judge first cuda May I use , Then you can move over 
if torch.cuda.is_available():
    #  Loss function   call cuda() Method before returning 
    loss_fn = loss_fn.cuda()

CPU Data in

imgs,targets = data

GPU Data in

imgs,targets = data
if torch.cuda.is_available():
   #  data   call cuda() Method before returning 
   imgs = imgs.cuda()
   #  data   call cuda() Method before returning 
   targets = targets.cuda()

in addition , Some notebooks may not have a graphics card , Then I want to experience the pleasure of graphics card , In fact, there are also some online graphics cards that can be used , Like Google's colab You can also use a graphics card online GPU Training .

Mode two

Use gpu Training as long as you find : A network model 、 data ( Enter and label )、 The loss function is called again .to(device) that will do .
The premise is to define device
for example :

#  Use CPU Training 
device = torch.device("cpu")
#  Use GPU Training 
device = torch.device("cuda")
#  If there are multiple graphics cards , Use the first graphics card for training 
device = torch.device("cuda:0")
#  If there are multiple graphics cards , Use the second graphics card for training 
device = torch.device("cuda:1")
#  if cuda Use if available GPU Training , Otherwise use cpu Train as equipment 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

After defining device After that, as long as the network model 、 data ( Enter and label )、 Loss function call .to(device) that will do
Compared with CPU Training code ,GPU The training code has made the following changes .
CPU Network model in

#  Creating neural networks 
obj = Booze()

GPU Network model in

obj = Booze()
#  call .to(device) Method 
obj = obj.to(device)

CPU Loss function in

#  Create a loss function 
loss_fn = nn.CrossEntropyLoss()

GPU Loss function in

#  Create a loss function 
loss_fn = nn.CrossEntropyLoss()
#  call .to(device) Method 
loss_fn = loss_fn.to(device)

CPU Data in

imgs,targets = data

GPU Data in

imgs,targets = data
#  call .to(device) Method 
imgs = imgs.to(device)
targets = targets.to(device)
原网站

版权声明
本文为[booze-J]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/189/202207072310362256.html