当前位置:网站首页>14. Draw network model structure
14. Draw network model structure
2022-07-08 01:01:00 【booze-J】
article
Draw network structure process
Before running the code, you need to install pydot
and graphviz
install pydot:pip install pydot
install graphviz It's a little bit more complicated , Let's Baidu by ourselves .
The code running platform is jupyter-notebook, Code blocks in the article , According to jupyter-notebook Written in the order of division in , Run article code , Glue directly into jupyter-notebook that will do .
1. Import third-party library
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten
from tensorflow.keras.optimizers import Adam
from keras.utils.vis_utils import plot_model
import matplotlib.pyplot as plt
# install pydot and graphviz
2. Data preprocessing
# Load data
(x_train,y_train),(x_test,y_test) = mnist.load_data()
# (60000, 28, 28)
print("x_shape:\n",x_train.shape)
# (60000,) Not yet one-hot code You need to operate by yourself later
print("y_shape:\n",y_train.shape)
# (60000, 28, 28) -> (60000,28,28,1)=( Number of pictures , Picture height , Image width , The number of channels in the picture ) reshape() Middle parameter filling -1 Parameter results can be calculated automatically Divide 255.0 To normalize
# Normalization is critical , It can greatly reduce the amount of calculation
x_train = x_train.reshape(-1,28,28,1)/255.0
x_test = x_test.reshape(-1,28,28,1)/255.0
# in one hot Format
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
3. Build a network model
# Define sequential model
model = Sequential()
# The first convolution layer Note that the first layer should write the size of the input image Later layers can be ignored
# input_shape Input plane
# filters Convolution kernel / Number of filters
# kernel_size Convolution window size
# strides step
# padding padding The way same/valid
# activation Activation function
model.add(Convolution2D(
input_shape=(28,28,1),
filters=32,
kernel_size=5,
strides=1,
padding="same",
activation="relu"
))
# The first pool
model.add(MaxPooling2D(
pool_size=2,
strides=2,
padding="same"
))
# The second pooling layer
model.add(Convolution2D(filters=64,kernel_size=5,strides=1,padding="same",activation="relu"))
# The second pooling layer
model.add(MaxPooling2D(pool_size=2,strides=2,padding="same"))
# Flatten the output of the second pool layer into 1 dimension
model.add(Flatten())
# The first full connection layer
model.add(Dense(units=1024,activation="relu"))
# Dropout Random selection 50% Neurons are trained
model.add(Dropout(0.5))
# The second full connection layer
model.add(Dense(units=10,activation="softmax"))
# # Define optimizer Set the learning rate to 1e-4
# adam = Adam(lr=1e-4)
# # Define optimizer ,loss function, The accuracy of calculation during training
# model.compile(optimizer=adam,loss="categorical_crossentropy",metrics=["accuracy"])
# # Training models
# model.fit(x_train,y_train,batch_size=64,epochs=10)
# # Evaluation model
# loss,accuracy=model.evaluate(x_test,y_test)
# print("test loss:",loss)
# print("test accuracy:",accuracy)
4. Draw the network model structure
# rankdir="TB" Finally, this is what determines the direction T representative TOP B representative BOTTOM TB From top to bottom If you want to go from left to right , modify rankdir="LR" that will do
plot_model(model,to_file="model.png",show_shapes=True,show_layer_names="False",rankdir="TB")
plt.figure(figsize=(10,10))
img = plt.imread("model.png")
plt.imshow(img)
plt.axis("off")
plt.show()
Running results :plot_model(model,to_file="model.png",show_shapes=True,show_layer_names="False",rankdir="TB")
Medium rankdir="TB"
Finally, this is what determines the direction T
representative TOP ,B
representative BOTTOM,TB
From top to bottom , If you want to go from left to right , modify rankdir="LR"
that will do .
边栏推荐
- Su embedded training - Day9
- Service Mesh介绍,Istio概述
- fabulous! How does idea open multiple projects in a single window?
- [OBS] the official configuration is use_ GPU_ Priority effect is true
- v-for遍历元素样式失效
- C # generics and performance comparison
- STL--String类的常用功能复写
- 取消select的默认样式的向下箭头和设置select默认字样
- AI zhetianchuan ml novice decision tree
- Su embedded training - Day8
猜你喜欢
SDNU_ACM_ICPC_2022_Summer_Practice(1~2)
New library launched | cnopendata China Time-honored enterprise directory
ReentrantLock 公平锁源码 第0篇
13. Enregistrement et chargement des modèles
Password recovery vulnerability of foreign public testing
9. Introduction to convolutional neural network
3.MNIST数据集分类
[necessary for R & D personnel] how to make your own dataset and display it.
7.正则化应用
基于卷积神经网络的恶意软件检测方法
随机推荐
NTT template for Tourism
【深度学习】AI一键换天
接口测试进阶接口脚本使用—apipost(预/后执行脚本)
Reentrantlock fair lock source code Chapter 0
Hotel
CVE-2022-28346:Django SQL注入漏洞
1293_ Implementation analysis of xtask resumeall() interface in FreeRTOS
7.正则化应用
【愚公系列】2022年7月 Go教学课程 006-自动推导类型和输入输出
丸子官网小程序配置教程来了(附详细步骤)
C # generics and performance comparison
133. 克隆图
2022-07-07: the original array is a monotonic array with numbers greater than 0 and less than or equal to K. there may be equal numbers in it, and the overall trend is increasing. However, the number
New library online | cnopendata China Star Hotel data
1.线性回归
Malware detection method based on convolutional neural network
12.RNN应用于手写数字识别
Huawei switch s5735s-l24t4s-qa2 cannot be remotely accessed by telnet
Service Mesh的基本模式
【GO记录】从零开始GO语言——用GO语言做一个示波器(一)GO语言基础