当前位置:网站首页>Comparison between setTimeout and requestanimationframe (page refresh)
Comparison between setTimeout and requestanimationframe (page refresh)
2022-07-02 08:00:00 【Rivers smile】
And setTimeout comparison ,requestAnimationFrame The biggest advantage is It's up to the system to decide when to execute the callback function . More specifically , If the screen refresh rate is 60Hz, So the callback function is every 16.7ms Be executed once , If the refresh rate is 75Hz, Then the interval becomes 1000/75=13.3ms, In other words ,requestAnimationFrame The pace of the system to follow the pace of innovation . It ensures that the callback function is executed only once in each refresh interval of the screen , This will not cause frame loss , It doesn't cause the animation to get stuck .
function move() {
y++;
cxt.clearRect(0, 0, w, h)
cxt.fillRect(x, y, 2, 35)
requestAnimationFrame(move) // Native js Animated by
}
move()边栏推荐
- (15) Flick custom source
- SQL server如何卸载干净
- Vscode下中文乱码问题
- JVM instructions
- 【MagNet】《Progressive Semantic Segmentation》
- 【学习笔记】Matlab自编图像卷积函数
- 【Hide-and-Seek】《Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised Localization xxx》
- [learning notes] matlab self compiled Gaussian smoother +sobel operator derivation
- 浅谈深度学习中的对抗样本及其生成方法
- 【雙目視覺】雙目矯正
猜你喜欢

【Mixed Pooling】《Mixed Pooling for Convolutional Neural Networks》

【Mixup】《Mixup:Beyond Empirical Risk Minimization》

【Random Erasing】《Random Erasing Data Augmentation》

【DIoU】《Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression》
![[mixup] mixup: Beyond Imperial Risk Minimization](/img/14/8d6a76b79a2317fa619e6b7bf87f88.png)
[mixup] mixup: Beyond Imperial Risk Minimization

EKLAVYA -- 利用神经网络推断二进制文件中函数的参数

图像增强的几个方法以及Matlab代码

利用超球嵌入来增强对抗训练

w10升级至W11系统,黑屏但鼠标与桌面快捷方式能用,如何解决

Thesis writing tip2
随机推荐
Income in the first month of naked resignation
How to clean up logs on notebook computers to improve the response speed of web pages
C语言实现XML生成解析库(XML扩展)
w10升级至W11系统,黑屏但鼠标与桌面快捷方式能用,如何解决
【Programming】
【DIoU】《Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression》
【MnasNet】《MnasNet:Platform-Aware Neural Architecture Search for Mobile》
Real world anti sample attack against semantic segmentation
【DIoU】《Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression》
Correction binoculaire
Eklavya -- infer the parameters of functions in binary files using neural network
TimeCLR: A self-supervised contrastive learning framework for univariate time series representation
(15) Flick custom source
针对tqdm和print的顺序问题
【Hide-and-Seek】《Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised Localization xxx》
Nacos service registration in the interface
CONDA common commands
学习写文章格式
SQL server如何卸载干净
Handwritten call, apply, bind