当前位置:网站首页>C语言实现XML生成解析库(XML扩展)
C语言实现XML生成解析库(XML扩展)
2022-07-02 06:27:00 【坤昱】
放假期间在家有点无聊,前一段时间对XML的生成、解析比较感兴趣,便根据自己对XML的理解结合链表实现一个XML的制作与解析的结构。
设计采用了固定格式头信息加自定义头信息:
《?xml version=”xml” encoding=”Utf-8”? 》这段数据属于固定格式头信息,里面的”xml”和”Utf-8”可以通过库函数进行修改;
《?567?》这段数据属于自定义头信息,可以自由增加;
节点、元素以及元素数据采用名称+标签类型+标签名称+标签数据组成,其中名称不能省略,类型、数据名称以及数据可以任意增加:
《test3 table1 tablename1=”tabledata1”》这段数据中 test3是节点名称,table1是节点标签类型,tablename1是标签名称,tabledata1是标签数据;
下面说下库的结构:
首先看下效果图: 
大量数据下的效果图:
边栏推荐
- Timeout docking video generation
- [mixup] mixup: Beyond Imperial Risk Minimization
- Summary of solving the Jetson nano installation onnx error (error: failed building wheel for onnx)
- It's great to save 10000 pictures of girls
- 【FastDepth】《FastDepth:Fast Monocular Depth Estimation on Embedded Systems》
- 将恶意软件嵌入到神经网络中
- 浅谈深度学习模型中的后门
- Nacos service registration in the interface
- 学习写文章格式
- 【MagNet】《Progressive Semantic Segmentation》
猜你喜欢

Specification for package drawing

open3d学习笔记三【采样与体素化】
![Open3d learning note 4 [surface reconstruction]](/img/9d/c1c3f2f3d4acd74a2c043571a120b3.png)
Open3d learning note 4 [surface reconstruction]

Feature Engineering: summary of common feature transformation methods

Timeout docking video generation
![[Sparse to Dense] Sparse to Dense: Depth Prediction from Sparse Depth samples and a Single Image](/img/05/bf131a9e2716c9147a5473db4d0a5b.png)
[Sparse to Dense] Sparse to Dense: Depth Prediction from Sparse Depth samples and a Single Image

Command line is too long
![[multimodal] clip model](/img/45/8501269190d922056ea0aad2e69fb7.png)
[multimodal] clip model

联邦学习下的数据逆向攻击 -- GradInversion
![[mixup] mixup: Beyond Imperial Risk Minimization](/img/14/8d6a76b79a2317fa619e6b7bf87f88.png)
[mixup] mixup: Beyond Imperial Risk Minimization
随机推荐
open3d学习笔记四【表面重建】
【MobileNet V3】《Searching for MobileNetV3》
Correction binoculaire
Replace self attention with MLP
Meta Learning 简述
open3d学习笔记二【文件读写】
How gensim freezes some word vectors for incremental training
业务架构图
The difference and understanding between generative model and discriminant model
【MobileNet V3】《Searching for MobileNetV3》
Handwritten call, apply, bind
【TCDCN】《Facial landmark detection by deep multi-task learning》
TimeCLR: A self-supervised contrastive learning framework for univariate time series representation
【Cutout】《Improved Regularization of Convolutional Neural Networks with Cutout》
C#与MySQL数据库连接
CVPR19-Deep Stacked Hierarchical Multi-patch Network for Image Deblurring论文复现
【Batch】learning notes
【MnasNet】《MnasNet:Platform-Aware Neural Architecture Search for Mobile》
Pointnet understanding (step 4 of pointnet Implementation)
Prompt 范式简述