当前位置:网站首页>C语言实现XML生成解析库(XML扩展)
C语言实现XML生成解析库(XML扩展)
2022-07-02 06:27:00 【坤昱】
放假期间在家有点无聊,前一段时间对XML的生成、解析比较感兴趣,便根据自己对XML的理解结合链表实现一个XML的制作与解析的结构。
设计采用了固定格式头信息加自定义头信息:
《?xml version=”xml” encoding=”Utf-8”? 》这段数据属于固定格式头信息,里面的”xml”和”Utf-8”可以通过库函数进行修改;
《?567?》这段数据属于自定义头信息,可以自由增加;
节点、元素以及元素数据采用名称+标签类型+标签名称+标签数据组成,其中名称不能省略,类型、数据名称以及数据可以任意增加:
《test3 table1 tablename1=”tabledata1”》这段数据中 test3是节点名称,table1是节点标签类型,tablename1是标签名称,tabledata1是标签数据;
下面说下库的结构:
首先看下效果图: 
大量数据下的效果图:
边栏推荐
- 【Cascade FPD】《Deep Convolutional Network Cascade for Facial Point Detection》
- 联邦学习下的数据逆向攻击 -- GradInversion
- 【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》
- 【Programming】
- 【TCDCN】《Facial landmark detection by deep multi-task learning》
- Open3d learning notes 1 [first glimpse, file reading]
- [learning notes] numerical differentiation of back error propagation
- Timeout docking video generation
- Eklavya -- infer the parameters of functions in binary files using neural network
- 【FastDepth】《FastDepth:Fast Monocular Depth Estimation on Embedded Systems》
猜你喜欢

It's great to save 10000 pictures of girls

联邦学习下的数据逆向攻击 -- GradInversion

Thesis writing tip2

【DIoU】《Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression》

【MagNet】《Progressive Semantic Segmentation》

应对长尾分布的目标检测 -- Balanced Group Softmax

【Cascade FPD】《Deep Convolutional Network Cascade for Facial Point Detection》

【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》

【Mixed Pooling】《Mixed Pooling for Convolutional Neural Networks》
![How do vision transformer work? [interpretation of the paper]](/img/93/5f967b876fbd63c07b8cfe8dd17263.png)
How do vision transformer work? [interpretation of the paper]
随机推荐
Feature Engineering: summary of common feature transformation methods
業務架構圖
Mmdetection trains its own data set -- export coco format of cvat annotation file and related operations
用于类别增量学习的动态可扩展表征 -- DER
The internal network of the server can be accessed, but the external network cannot be accessed
Summary of solving the Jetson nano installation onnx error (error: failed building wheel for onnx)
Embedding malware into neural networks
Remplacer l'auto - attention par MLP
【Mixup】《Mixup:Beyond Empirical Risk Minimization》
EKLAVYA -- 利用神经网络推断二进制文件中函数的参数
笔记本电脑卡顿问题原因
(15) Flick custom source
Label propagation
用C# 语言实现MYSQL 真分页
Common machine learning related evaluation indicators
[mixup] mixup: Beyond Imperial Risk Minimization
Organigramme des activités
The difference and understanding between generative model and discriminant model
服务器的内网可以访问,外网却不能访问的问题
使用C#语言来进行json串的接收