当前位置:网站首页>【双目视觉】双目矫正
【双目视觉】双目矫正
2022-07-02 06:26:00 【寂云萧】
一、双目标定
双目标定需要获取到两个相机的内参以及变换矩阵。可参照链接:
https://blog.csdn.net/qq_38236355/article/details/89280633
https://blog.csdn.net/qingfengxiaosong/article/details/109897053
或者自行百度
建议使用Matlab工具箱做标定,其中建议勾选3 Coefficients。
输出Matlab的数据之后,可用一下脚本提取数据:
rowName = cell(1,10);
rowName{1,1} = '平移矩阵';
rowName{1,2} = '旋转矩阵';
rowName{1,3} = '相机1内参矩阵';
rowName{1,4} = '相机1径向畸变';
rowName{1,5} = '相机1切向畸变';
rowName{1,6} = '相机2内参矩阵';
rowName{1,7} = '相机2径向畸变';
rowName{1,8} = '相机2切向畸变';
rowName{1,9} = '相机1畸变向量';
rowName{1,10} = '相机2畸变向量';
xlswrite('out.xlsx',rowName(1,1),1,'A1');
xlswrite('out.xlsx',rowName(1,2),1,'A2');
xlswrite('out.xlsx',rowName(1,3),1,'A5');
xlswrite('out.xlsx',rowName(1,4),1,'A8');
xlswrite('out.xlsx',rowName(1,5),1,'A9');
xlswrite('out.xlsx',rowName(1,6),1,'A10');
xlswrite('out.xlsx',rowName(1,7),1,'A13');
xlswrite('out.xlsx',rowName(1,8),1,'A14');
xlswrite('out.xlsx',rowName(1,9),1,'A15');
xlswrite('out.xlsx',rowName(1,10),1,'A16');
xlswrite('out.xlsx',stereoParams.TranslationOfCamera2,1,'B1'); % 平移矩阵
xlswrite('out.xlsx',stereoParams.RotationOfCamera2.',1,'B2'); % 旋转矩阵
xlswrite('out.xlsx',stereoParams.CameraParameters1.IntrinsicMatrix.',1,'B5'); % 相机1内参矩阵
xlswrite('out.xlsx',stereoParams.CameraParameters1.RadialDistortion,1,'B8'); % 相机1径向畸变(1,2,5)
xlswrite('out.xlsx',stereoParams.CameraParameters1.TangentialDistortion,1,'B9'); % 相机1切向畸变(3,4)
xlswrite('out.xlsx',stereoParams.CameraParameters2.IntrinsicMatrix.',1,'B10'); % 相机2内参矩阵
xlswrite('out.xlsx',stereoParams.CameraParameters2.RadialDistortion,1,'B13'); % 相机2径向畸变(1,2,5)
xlswrite('out.xlsx',stereoParams.CameraParameters2.TangentialDistortion,1,'B14'); % 相机2切向畸变(3,4)
xlswrite('out.xlsx',[stereoParams.CameraParameters1.RadialDistortion(1:2), stereoParams.CameraParameters1.TangentialDistortion,...
stereoParams.CameraParameters1.RadialDistortion(3)],1,'B15'); % 相机1畸变向量
xlswrite('out.xlsx',[stereoParams.CameraParameters2.RadialDistortion(1:2), stereoParams.CameraParameters2.TangentialDistortion,...
stereoParams.CameraParameters2.RadialDistortion(3)],1,'B16'); % 相机2畸变向量
Python双目矫正
新建一个python脚本,输入以下代码:
import cv2
import numpy as np
# 左目内参
left_camera_matrix = np.array([[443.305413261701, 0., 473.481578105186],
[0., 445.685585080218, 481.627083907456],
[0., 0., 1.]])
#左目畸变
#k1 k2 p1 p2 k3
left_distortion = np.array([[-0.261575534517449, 0.0622298171820726, 0., 0., -0.00638628534161724]])
# 右目内参
right_camera_matrix = np.array([[441.452616156177,0., 484.276702473006],
[0., 444.350924943458, 465.054536507021],
[0., 0., 1.]])
# 右目畸变
right_distortion = np.array([[-0.257761221642368, 0.0592089672793365, 0., 0., -0.00576090991058531]])
# 旋转矩阵
R = np.matrix([
[0.999837210893742, -0.00477934325693493, 0.017398551383822],
[0.00490062605211919, 0.999963944810228, -0.0069349076319899],
[-0.0173647797717217, 0.00701904249875521, 0.999824583347439]
])
# 平移矩阵
T = np.array([-71.0439056359403, -0.474467959947789, -0.27989811881883]) # 平移关系向量
size = (960, 960) # 图像尺寸
# 进行立体更正
R1, R2, P1, P2, Q, validPixROI1, validPixROI2 = cv2.stereoRectify(left_camera_matrix, left_distortion,
right_camera_matrix, right_distortion, size, R,
T)
# 计算更正map
left_map1, left_map2 = cv2.initUndistortRectifyMap(left_camera_matrix, left_distortion, R1, P1, size, cv2.CV_16SC2)
right_map1, right_map2 = cv2.initUndistortRectifyMap(right_camera_matrix, right_distortion, R2, P2, size, cv2.CV_16SC2)
参数需要换成自己实际的参数。
接下来随便写一个脚本测试一下更正结果:
import cv2
import numpy as np
import camera_config
w = 1920
h = 960
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, w)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, h)
key = ""
ww = int(w/2)
jiange = int(h/10)
while key!=27:
ret, img = cap.read()
if ret:
imgLeft = img[:, :ww]
imgRight = img[:, ww:w]
left_remap = cv2.remap(imgLeft, camera_config.left_map1, camera_config.left_map2, cv2.INTER_LINEAR)
right_remap = cv2.remap(imgRight, camera_config.right_map1, camera_config.right_map2, cv2.INTER_LINEAR)
out = np.hstack([left_remap, right_remap])
for i in range(10):
cv2.line(out, (0, jiange*i), (w, jiange*i), (255, 0, 0), 2)
cv2.imshow("frame", out)
key = cv2.waitKey(10)
cap.release()
cv2.destroyAllWindows()
即可看到效果:
校正前(很差的相机,鱼眼效果,不适合用于实际使用):
校正后:
边栏推荐
- PHP returns the corresponding key value according to the value in the two-dimensional array
- Tencent machine test questions
- Machine learning theory learning: perceptron
- [paper introduction] r-drop: regulated dropout for neural networks
- 【Mixup】《Mixup:Beyond Empirical Risk Minimization》
- [model distillation] tinybert: distilling Bert for natural language understanding
- Generate random 6-bit invitation code in PHP
- Huawei machine test questions-20190417
- 【Paper Reading】
- Implementation of yolov5 single image detection based on onnxruntime
猜你喜欢
【Paper Reading】
【FastDepth】《FastDepth:Fast Monocular Depth Estimation on Embedded Systems》
图片数据爬取工具Image-Downloader的安装和使用
【Mixup】《Mixup:Beyond Empirical Risk Minimization》
SSM personnel management system
Deep learning classification Optimization Practice
How do vision transformer work?【论文解读】
【AutoAugment】《AutoAugment:Learning Augmentation Policies from Data》
What if the laptop task manager is gray and unavailable
超时停靠视频生成
随机推荐
How to turn on night mode on laptop
【Ranking】Pre-trained Language Model based Ranking in Baidu Search
Using compose to realize visible scrollbar
论文写作tip2
SSM second hand trading website
【FastDepth】《FastDepth:Fast Monocular Depth Estimation on Embedded Systems》
Drawing mechanism of view (I)
[torch] some ideas to solve the problem that the tensor parameters have gradients and the weight is not updated
【深度学习系列(八)】:Transoform原理及实战之原理篇
《Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer》论文翻译
Thesis writing tip2
【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization
[introduction to information retrieval] Chapter II vocabulary dictionary and inverted record table
Implementation of yolov5 single image detection based on onnxruntime
Sorting out dialectics of nature
Latex formula normal and italic
Calculate the difference in days, months, and years between two dates in PHP
【Sparse-to-Dense】《Sparse-to-Dense:Depth Prediction from Sparse Depth Samples and a Single Image》
【Hide-and-Seek】《Hide-and-Seek: A Data Augmentation Technique for Weakly-Supervised Localization xxx》
Jordan decomposition example of matrix