当前位置:网站首页>自适应控制——仿真实验三 用超稳定性理论设计模型参考自适应系统
自适应控制——仿真实验三 用超稳定性理论设计模型参考自适应系统
2022-07-31 14:28:00 【lan 606】
一、问题描述
设控制对象的传递函数为
W p ( s ) = k 1 T 1 2 s 2 + 2 T 1 ξ 1 s + 1 (1) W_{p}(s)=\frac{k_{1}}{T_{1}^{2} s^{2}+2 T_{1} \xi_{1} s+1} \tag{1} Wp(s)=T12s2+2T1ξ1s+1k1(1)
参数 k 1 k_1 k1, T 1 T_{1} T1 和 ξ 1 \xi_{1} ξ1 随时间而变的变化规律为
k 1 ( t ) = 1.12 − 0.008 t , T 1 ( t ) = 0.036 + 0.004 t , ξ 1 ( t ) = 0.8 − 0.01 t (2) k_{1}(t)=1.12-0.008 t, \quad T_{1}(t)=0.036+0.004 t, \quad \xi_{1}(t)=0.8-0.01 t \tag{2} k1(t)=1.12−0.008t,T1(t)=0.036+0.004t,ξ1(t)=0.8−0.01t(2)
设参考模型的传递函数为
W m ( s ) = 1 0.0 8 2 s 2 + 2 × 0.08 × 0.75 s + 1 (3) W_{m}(s)=\frac{1}{0.08^{2} s^{2}+2 \times 0.08 \times 0.75 s+1} \tag{3} Wm(s)=0.082s2+2×0.08×0.75s+11(3)
用超稳定性理论设计模型参考自适应系统。
假定系统参考输入:
r ( t ) r(t) r(t) 是方波信号,周期为4s,振幅为 ± 2 \pm 2 ±2。
设计自适应规律,给出仿真结果。
二、问题建模
本次仿真实验主要针对的是带状态变量滤波器(情况1)下的并联模型参考自适应控制系统。设参考模型方程为:
( ∑ i = 0 n a m i p i ) y m = ( ∑ i = 0 m b m i p i ) r , a m n = 1 (4) \left(\sum_{i=0}^{n} a_{m i} p^{i}\right) y_{m}=\left(\sum_{i=0}^{m} b_{m i} p^{i}\right) r, a_{m n}=1 \tag{4} (i=0∑namipi)ym=(i=0∑mbmipi)r,amn=1(4)
接在参考模型输出端的状态变量滤波器的方程为:
( ∑ i = 0 n − 1 c i p i ) y m f = y m , c n − 1 = 1 (5) \left(\sum_{i=0}^{n-1} c_{i} p^{i}\right) y_{m f}=y_{m}, c_{n-1}=1 \tag{5} (i=0∑n−1cipi)ymf=ym,cn−1=1(5)
接在可调系统输入端的状态变量滤波器的方程为:
( ∑ i = 0 n − 1 c i p i ) r f = r , c n − 1 = 1 (6) \left(\sum_{i=0}^{n-1} c_{i} p^{i}\right) r_{f}=r, c_{n-1}=1 \tag{6} (i=0∑n−1cipi)rf=r,cn−1=1(6)
可调系统方程为:
( ∑ i = 0 n a s i ( v , t ) p i ) y s f = ( ∑ i = 0 m b s i ( v , t ) p i ) r f , a s n ( v , t ) = 1 (7) \left(\sum_{i=0}^{n} a_{s i}(v, t) p^{i}\right) y_{s f}=\left(\sum_{i=0}^{m} b_{s i}(v, t) p^{i}\right) r_{f}, a_{s n}(v, t)=1 \tag{7} (i=0∑nasi(v,t)pi)ysf=(i=0∑mbsi(v,t)pi)rf,asn(v,t)=1(7)
广义输出误差为:
ε f = y m f − y s f (8) \varepsilon_{f}=y_{m f}-y_{s f} \tag{8} εf=ymf−ysf(8)
为保证等价的前向方块严格正实,引入串联补偿器:
v = D ( p ) ε f = ( ∑ i = 0 n − 1 d i p i ) ε f (9) v=D(p) \varepsilon_{f}=\left(\sum_{i=0}^{n-1} d_{i} p^{i}\right) \varepsilon_{f} \tag{9} v=D(p)εf=(i=0∑n−1dipi)εf(9)
对于可调系统中的可调参数 a s i ( v , t ) a_{si}(v,t) asi(v,t) 及 b s i ( v , t ) b_{si}(v,t) bsi(v,t),采取PI控制,则自适应规律为
a s i ( v , t ) = ∫ 0 t φ 1 i ( v , t , τ ) d τ + φ 2 i ( v , t ) + a s i ( 0 ) , i = 0 , 1 , ⋯ , n − 1 b s i ( v , t ) = ∫ 0 t ψ 1 i ( v , t , τ ) d τ + ψ 2 i ( v , t ) + b s i ( 0 ) , i = 0 , 1 , ⋯ , m (10) \begin{aligned} a_{s i}(v, t)&=\int_{0}^{t} \varphi_{1 i}(v, t, \tau) d \tau+\varphi_{2 i}(v, t)+a_{s i}(0), i=0,1, \cdots, n-1 \\ b_{s i}(v, t)&=\int_{0}^{t} \psi_{1 i}(v, t, \tau) d \tau+\psi_{2 i}(v, t)+b_{s i}(0), i=0,1, \cdots, m \end{aligned} \tag{10} asi(v,t)bsi(v,t)=∫0tφ1i(v,t,τ)dτ+φ2i(v,t)+asi(0),i=0,1,⋯,n−1=∫0tψ1i(v,t,τ)dτ+ψ2i(v,t)+bsi(0),i=0,1,⋯,m(10)
将参考模型与状态变量滤波器互换位置,可得到形式同(7)式的参考模型方程如下:
( ∑ i = 0 n a m i p i ) y m f = ( ∑ i = 0 m b m i p i ) r f , a m n = 1 (11) \left(\sum_{i=0}^{n} a_{m i} p^{i}\right) y_{m f}=\left(\sum_{i=0}^{m} b_{m i} p^{i}\right) r_{f}, a_{m n}=1 \tag{11} (i=0∑namipi)ymf=(i=0∑mbmipi)rf,amn=1(11)
结合(7)式,(11)式和(8)式,可推导出
( ∑ i = 0 n a m i p i ) ε f = [ ∑ i = 0 n ( a s i − a m i ) p i ] y s f + [ ∑ i = 0 n ( b m i − b s i ) p i ] r f (12) \left(\sum_{i=0}^{n} a_{m i} p^{i}\right) \varepsilon_{f}=\left[\sum_{i=0}^{n}\left(a_{s i}-a_{m i}\right) p^{i}\right] y_{s f}+\left[\sum_{i=0}^{n}\left(b_{m i}-b_{s i}\right) p^{i}\right] r_{f} \tag{12} (i=0∑namipi)εf=[i=0∑n(asi−ami)pi]ysf+[i=0∑n(bmi−bsi)pi]rf(12)
令
ω 1 = [ ∑ i = 0 n ( a s i − a m i ) p i ] y s f + [ ∑ i = 0 n ( b m i − b s i ) p i ] r f (13) \omega_{1}=\left[\sum_{i=0}^{n}\left(a_{s i}-a_{m i}\right) p^{i}\right] y_{s f}+\left[\sum_{i=0}^{n}\left(b_{m i}-b_{s i}\right) p^{i}\right] r_{f} \tag{13} ω1=[i=0∑n(asi−ami)pi]ysf+[i=0∑n(bmi−bsi)pi]rf(13)
则(12)式变成
( ∑ i = 0 n a m i p i ) ε f = ω 13 (14) \left(\sum_{i=0}^{n} a_{m i} p^{i}\right) \varepsilon_{f}=\omega_{13} \tag{14} (i=0∑namipi)εf=ω13(14)
将可调系统中的可调参数选定的自适应规律(10)式代入(13)式中,可得反馈方框的输出量 ω \omega ω 的形式如下:
ω = − ω 1 = − { ∑ i = 0 n − 1 [ ∫ 0 t φ 1 i ( v , t , τ ) d τ + φ 2 i ( v , t ) + a s i ( 0 ) − a m i ] p i } y s f + { ∑ i = 0 n − 1 [ ∫ 0 t ψ 1 i ( v , t , τ ) d τ + ψ 2 i ( v , t ) + b s i ( 0 ) − b m i ] p i } r f (15) \begin{aligned} \omega=-\omega_{1}=&-\left\{\sum_{i=0}^{n-1}\right. {\left.\left[\int_{0}^{t} \varphi_{1 i}(v, t, \tau) d \tau+\varphi_{2 i}(v, t)+a_{s i}(0)-a_{m i}\right] p^{i}\right\} y_{s f} } \\ &+\left\{\sum_{i=0}^{n-1}\left[\int_{0}^{t} \psi_{1 i}(v, t, \tau) d \tau+\psi_{2 i}(v, t)+b_{s i}(0)-b_{m i}\right] p^{i}\right\} r_{f} \end{aligned} \tag{15} ω=−ω1=−{ i=0∑n−1[∫0tφ1i(v,t,τ)dτ+φ2i(v,t)+asi(0)−ami]pi}ysf+{ i=0∑n−1[∫0tψ1i(v,t,τ)dτ+ψ2i(v,t)+bsi(0)−bmi]pi}rf(15)
由波波夫积分不等式,及引理1和引理2,可得自适应规律
φ 1 i = − k a i ( t − τ ) v ( τ ) p i y s f ( τ ) , τ ≤ t , i = 0 , 1 , ⋯ , n − 1 φ 2 i = − k a i ′ ( t ) v ( t ) p i y s f ( t ) , i = 0 , 1 , ⋯ , n − 1 ψ 1 i = k b i ( t − τ ) v ( τ ) p i r f ( τ ) , τ ≤ t , i = 0 , 1 , ⋯ , m ψ 2 i = k b i ′ ( t ) v ( t ) p i r f ( t ) , i = 0 , 1 , ⋯ , m (16) \begin{aligned} \varphi_{1 i}&=-k_{a i}(t-\tau) v(\tau) p^{i} y_{s f}(\tau), \quad \tau \leq t, i=0,1, \cdots, n-1 \\ \varphi_{2 i}&=-k_{a i}^{\prime}(t) v(t) p^{i} y_{s f}(t), \quad i=0,1, \cdots, n-1 \\ \psi_{1 i}&=k_{b i}(t-\tau) v(\tau) p^{i} r_{f}(\tau), \quad \tau \leq t, i=0,1, \cdots, m \\ \psi_{2 i}&=k_{b i}^{\prime}(t) v(t) p^{i} r_{f}(t), \quad i=0,1, \cdots, m \end{aligned} \tag{16} φ1iφ2iψ1iψ2i=−kai(t−τ)v(τ)piysf(τ),τ≤t,i=0,1,⋯,n−1=−kai′(t)v(t)piysf(t),i=0,1,⋯,n−1=kbi(t−τ)v(τ)pirf(τ),τ≤t,i=0,1,⋯,m=kbi′(t)v(t)pirf(t),i=0,1,⋯,m(16)
式中, k a i ( t − τ ) k_{a i}(t-\tau) kai(t−τ) 和 k b i ( t − τ ) k_{b i}(t-\tau) kbi(t−τ) 是正定标量积分核,它们的拉普拉斯变化式为在 s = 0 s=0 s=0 处有一极点的正实传递函数; k a i ′ k_{a i}^{\prime} kai′ 和 k b i ′ k_{b i}^{\prime} kbi′ 在 t ≥ 0 t\ge0 t≥0 时为非负标量增益。
三、问题求解
将原题中给定的参考模型和可调系统的传递函数写成输入输出方程的形式:
( 0.0 8 2 p 2 + 2 × 0.08 × 0.75 p + 1 ) y m = r ( T 1 2 p 2 + 2 T 1 ξ 1 p + 1 ) y s f = k 1 r f (17) \begin{gathered} &\left(0.08^{2} p^{2}+2 \times 0.08 \times 0.75 p+1\right) y_{m}=r \\ &\left(T_{1}^{2} p^{2}+2 T_{1} \xi_{1} p+1\right) y_{s f}=k_{1} r_{f} \end{gathered} \tag{17} (0.082p2+2×0.08×0.75p+1)ym=r(T12p2+2T1ξ1p+1)ysf=k1rf(17)
再将上式写成首一古尔维兹多项式的形式:
( p 2 + 2 × 0.08 × 0.75 0.0 8 2 p + 1 0.0 8 2 ) y m = 1 0.0 8 2 r ( p 2 + 2 T 1 ξ 1 T 1 2 + 1 T 1 2 ) y s f = k 1 T 1 2 r f (18) \begin{gathered} \left(p^{2}+\frac{2 \times 0.08 \times 0.75}{0.08^{2}} p+\frac{1}{0.08^{2}}\right) y_{m}=\frac{1}{0.08^{2}} r \\ \left(p^{2}+\frac{2 T_{1} \xi_{1}}{T_{1}^{2}}+\frac{1}{T_{1}^{2}}\right) y_{s f}=\frac{k_{1}}{T_{1}^{2}} r_{f} \end{gathered} \tag{18} (p2+0.0822×0.08×0.75p+0.0821)ym=0.0821r(p2+T122T1ξ1+T121)ysf=T12k1rf(18)
对照(7)式和(11)式,可知相关参数如下:
a m 1 = 2 × 0.08 × 0.75 0.0 8 2 = 18.75 a m 0 = 1 0.0 8 2 = 156.25 b m 0 = 1 0.0 8 2 = 156.25 a s 1 ( v , t ) = 2 T 1 ( t ) ξ 1 ( t ) T 1 2 ( t ) = 2 ( 0.8 − 0.01 t ) ( 0.036 + 0.004 t ) a s 0 ( v , t ) = 1 T 1 2 ( t ) = 1 ( 0.036 + 0.004 t ) 2 b s 0 ( v , t ) = k 1 ( t ) T 1 2 ( t ) = 1.12 − 0.008 t ( 0.036 + 0.004 t ) 2 (19) \begin{aligned} &a_{m 1}=\frac{2 \times 0.08 \times 0.75}{0.08^{2}}=18.75 \\ &a_{m 0}=\frac{1}{0.08^{2}}=156.25 \\ &b_{m 0}=\frac{1}{0.08^{2}}=156.25 \\ &a_{s 1}(v, t)=\frac{2 T_{1}(t) \xi_{1}(t)}{T_{1}^{2}(t)}=\frac{2(0.8-0.01 t)}{(0.036+0.004 t)} \\ &a_{s 0}(v, t)=\frac{1}{T_{1}^{2}(t)}=\frac{1}{(0.036+0.004 t)^{2}} \\ &b_{s 0}(v, t)=\frac{k_{1}(t)}{T_{1}^{2}(t)}=\frac{1.12-0.008 t}{(0.036+0.004 t)^{2}} \end{aligned} \tag{19} am1=0.0822×0.08×0.75=18.75am0=0.0821=156.25bm0=0.0821=156.25as1(v,t)=T12(t)2T1(t)ξ1(t)=(0.036+0.004t)2(0.8−0.01t)as0(v,t)=T12(t)1=(0.036+0.004t)21bs0(v,t)=T12(t)k1(t)=(0.036+0.004t)21.12−0.008t(19)
进而可知, a s 1 ( 0 ) ≈ 44.4 a_{s 1}(0) \approx 44.4 as1(0)≈44.4, a s 0 ( 0 ) ≈ 771.6 a_{s 0}(0) \approx 771.6 as0(0)≈771.6, b s 0 ( 0 ) ≈ 864.2 b_{s 0}(0) \approx 864.2 bs0(0)≈864.2。
设输出的广义误差为
ε f = y m f − y s f (20) \varepsilon_{f}=y_{m f}-y_{s f} \tag{20} εf=ymf−ysf(20)
串联补偿器方程为
v = D ( p ) ε f = ( d 1 p + d 0 ) ε f (21) v=D(p) \varepsilon_{f}=\left(d_{1} p+d_{0}\right) \varepsilon_{f} \tag{21} v=D(p)εf=(d1p+d0)εf(21)
选取的自适应规律如下
a s i ( v , t ) = ∫ 0 t φ 1 i ( v , t , τ ) d τ + φ 2 i ( v , t ) + a s i ( 0 ) , i = 0 , 1 b s 0 ( v , t ) = ∫ 0 t ψ 10 ( v , t , τ ) d τ + ψ 20 ( v , t ) + b s 0 ( 0 ) (22) \begin{aligned} a_{s i}(v, t)&=\int_{0}^{t} \varphi_{1 i}(v, t, \tau) d \tau+\varphi_{2 i}(v, t)+a_{s i}(0), i=0,1 \\ b_{s 0}(v, t)&=\int_{0}^{t} \psi_{10}(v, t, \tau) d \tau+\psi_{20}(v, t)+b_{s 0}(0) \end{aligned} \tag{22} asi(v,t)bs0(v,t)=∫0tφ1i(v,t,τ)dτ+φ2i(v,t)+asi(0),i=0,1=∫0tψ10(v,t,τ)dτ+ψ20(v,t)+bs0(0)(22)
参考(16)式的形式,可得可调参数的自适应规律如下:
φ 10 = − k a 0 ( t − τ ) v ( τ ) y s f ( τ ) , τ ≤ t φ 20 = − k a 0 ′ ( t ) v ( t ) y s f ( t ) φ 11 = − k a 1 ( t − τ ) v ( τ ) p y s f ( τ ) , τ ≤ t φ 21 = − k a 1 ′ ( t ) v ( t ) p y s f ( t ) ψ 10 = k b 0 ( t − τ ) v ( τ ) r f ( τ ) , τ ⩽ t ψ 20 = k b 0 ′ ( t ) v ( t ) r f ( t ) (23) \begin{aligned} \varphi_{1 0}&=-k_{a 0}(t-\tau) v(\tau) y_{sf}(\tau), \quad \tau \le t \\ \varphi_{2 0}&=-k_{a 0}^{\prime}(t) v(t) y_{s f}(t) \\ \varphi_{1 1}&=-k_{a 1}(t-\tau) v(\tau) p y_{sf}(\tau), \quad \tau \le t \\ \varphi_{2 1}&=-k_{a 1}^{\prime}(t) v(t) p y_{s f}(t) \\ \psi_{1 0}&=k_{b 0}(t-\tau) v(\tau) r_{f}(\tau), \quad \tau \leqslant t \\ \psi_{2 0}&=k_{b 0}^{\prime}(t) v(t) r_{f}(t) \end{aligned} \tag{23} φ10φ20φ11φ21ψ10ψ20=−ka0(t−τ)v(τ)ysf(τ),τ≤t=−ka0′(t)v(t)ysf(t)=−ka1(t−τ)v(τ)pysf(τ),τ≤t=−ka1′(t)v(t)pysf(t)=kb0(t−τ)v(τ)rf(τ),τ⩽t=kb0′(t)v(t)rf(t)(23)
式中, k a 0 ( t − τ ) k_{a 0}(t-\tau) ka0(t−τ)、 k a 1 ( t − τ ) k_{a 1}(t-\tau) ka1(t−τ) 和 k b 0 ( t − τ ) k_{b 0}(t-\tau) kb0(t−τ) 为正定积分核, k a 0 ′ ( t ) k_{a 0}^{\prime}(t) ka0′(t)、 k a 1 ′ ( t ) k_{a 1}^{\prime}(t) ka1′(t) 和 k b 0 ′ ( t ) k_{b 0}^{\prime}(t) kb0′(t) 对 ∀ t ≥ 0 \forall t \ge 0 ∀t≥0 均为非负标量增益。
下面再讨论一下引入的串联补偿器中的参数 d 0 d_0 d0 和 d 1 d_1 d1 的取值范围,系统的等价前向线性方块传递函数为:
h ( s ) = d 1 ( s ) + d 0 s 2 + a m 1 s + a m 0 (24) h(s)=\frac {d_1(s)+d_0} {s^2+a_{m1}s+a_{m0}} \tag{24} h(s)=s2+am1s+am0d1(s)+d0(24)
其对应的能控标准型如下:
e ˙ = A m e + b ω 1 v = d T e (25) \begin{aligned} \boldsymbol{\dot e} &= \boldsymbol{A_m} \boldsymbol{e} + b \omega_1 \\ v &= d^T \boldsymbol{e} \end{aligned} \tag{25} e˙v=Ame+bω1=dTe(25)
式中, e = [ ε ε ˙ ] \boldsymbol{e}=\left[ \begin{matrix} \varepsilon \\ \dot \varepsilon \end{matrix} \right] e=[εε˙], A m = [ 0 1 − a m 0 − a m 1 ] \boldsymbol{A_m}=\left[ \begin{matrix} 0 & 1 \\ -a_{m0} & -a_{m1} \end{matrix} \right] Am=[0−am01−am1], b = [ 0 1 ] b=\left[ \begin{matrix} 0 \\ 1 \end{matrix} \right] b=[01], d = [ d 0 d 1 ] d=\left[ \begin{matrix} d_0 \\ d_1 \end{matrix} \right] d=[d0d1]。
要求 h ( s ) h(s) h(s) 是一个严格正实传递函数,则必定存在正定对称矩阵 P P P 和 Q Q Q,使方程式(26)成立:
{ P A m + A m T P = − Q P b = d (26) \left\{ \begin{aligned} &P A_m + A_m^T P = -Q\\ &P b = d \end{aligned} \right. \tag{26} { PAm+AmTP=−QPb=d(26)
由此可解得:
d 0 > 0 , d 1 d 0 > 1 a m 1 = 0.053 (27) d_0 > 0, \quad \frac {d_1} {d_0} > \frac {1} {a_{m_1}} =0.053 \tag{27} d0>0,d0d1>am11=0.053(27)
最终搭建的仿真模型框图如 图1 所示:

具体的 Simulink 仿真文件我已上传至百度网盘中,链接如下:experiment_3.slx_免费高速下载|百度网盘-分享无限制 (baidu.com)
输入信号与广义输出误差信号如 图2 所示:

输入信号与增益信号如 图3 所示:

输入信号与可调参数1的变化曲线如 图4 所示:

输入信号与可调参数2的变化曲线如 图5 所示:

参考书目
李言俊, 张科. 自适应控制理论及应用[M]. 西北工业大学出版社, 2005.
边栏推荐
- Shell项目实战1.系统性能分析
- ERROR: Failed building wheel for osgeo
- Selenium自动化测试之Selenium IDE
- sentinel与nacos持久化
- UnityShader入门学习(二)——渲染流水线
- The role of /etc/profile, /etc/bashrc, ~/.bash_profile, ~/.bashrc files
- For enterprises in the digital age, data governance is difficult, but it should be done
- 尚硅谷-JVM-内存和垃圾回收篇(P1~P203)
- 英文语法-时与态
- 已解决(pymysqL连接数据库报错)pymysqL.err.ProgrammingError: (1146,“Table ‘test.students‘ doesn‘t exist“)
猜你喜欢

英文语法-时与态

OpenShift 4 - Deploy Redis Cluster with Operator

什么是消息队列呢?

Why do we need to sub-library and sub-table?

MySQL has played to such a degree, no wonder the big manufacturers are rushing to ask for it!

Sentinel服务熔断和降级

Essential Learning for Getting Started with Unity Shader - Transparency Effect

"Listen to me, thank you" can be said in ancient poetry?Tsinghua University has developed an artifact of "Searching Sentences According to Meaning", which can search for the famous sayings you want wi

海康摄像机取流RTSP地址规则说明

C# using ComboBox control
随机推荐
Shell脚本经典案例:文件的备份
【Pytorch】F.softmax()方法说明
Description of Hikvision camera streaming RTSP address rules
Unity Shader入门精要学习——透明效果
什么是消息队列呢?
Introduction to BigDecimal, common methods
小试牛刀:Go 反射帮我把 Excel 转成 Struct
[Pytorch] F.softmax() method description
How to clean up the lodash.memoize cache in the element-plus virtual table virtual-list component?
最近很火的国产接口神器Apipost体验
DeepLab系列学习
Open Inventor 10.12 Major Improvements - Harmony Edition
Shell project combat 1. System performance analysis
OAuth2:微服务权限校验Session共享
redhat/openssl generates a self-signed ca certificate and uses it
Comparison of Optical Motion Capture and UWB Positioning Technology in Multi-agent Cooperative Control Research
svn安装及使用(身体功能手册)
MySQL [subquery]
为什么要分库分表?
[Pytorch] torch.argmax() usage