当前位置:网站首页>自适应控制——仿真实验三 用超稳定性理论设计模型参考自适应系统
自适应控制——仿真实验三 用超稳定性理论设计模型参考自适应系统
2022-07-31 14:28:00 【lan 606】
一、问题描述
设控制对象的传递函数为
W p ( s ) = k 1 T 1 2 s 2 + 2 T 1 ξ 1 s + 1 (1) W_{p}(s)=\frac{k_{1}}{T_{1}^{2} s^{2}+2 T_{1} \xi_{1} s+1} \tag{1} Wp(s)=T12s2+2T1ξ1s+1k1(1)
参数 k 1 k_1 k1, T 1 T_{1} T1 和 ξ 1 \xi_{1} ξ1 随时间而变的变化规律为
k 1 ( t ) = 1.12 − 0.008 t , T 1 ( t ) = 0.036 + 0.004 t , ξ 1 ( t ) = 0.8 − 0.01 t (2) k_{1}(t)=1.12-0.008 t, \quad T_{1}(t)=0.036+0.004 t, \quad \xi_{1}(t)=0.8-0.01 t \tag{2} k1(t)=1.12−0.008t,T1(t)=0.036+0.004t,ξ1(t)=0.8−0.01t(2)
设参考模型的传递函数为
W m ( s ) = 1 0.0 8 2 s 2 + 2 × 0.08 × 0.75 s + 1 (3) W_{m}(s)=\frac{1}{0.08^{2} s^{2}+2 \times 0.08 \times 0.75 s+1} \tag{3} Wm(s)=0.082s2+2×0.08×0.75s+11(3)
用超稳定性理论设计模型参考自适应系统。
假定系统参考输入:
r ( t ) r(t) r(t) 是方波信号,周期为4s,振幅为 ± 2 \pm 2 ±2。
设计自适应规律,给出仿真结果。
二、问题建模
本次仿真实验主要针对的是带状态变量滤波器(情况1)下的并联模型参考自适应控制系统。设参考模型方程为:
( ∑ i = 0 n a m i p i ) y m = ( ∑ i = 0 m b m i p i ) r , a m n = 1 (4) \left(\sum_{i=0}^{n} a_{m i} p^{i}\right) y_{m}=\left(\sum_{i=0}^{m} b_{m i} p^{i}\right) r, a_{m n}=1 \tag{4} (i=0∑namipi)ym=(i=0∑mbmipi)r,amn=1(4)
接在参考模型输出端的状态变量滤波器的方程为:
( ∑ i = 0 n − 1 c i p i ) y m f = y m , c n − 1 = 1 (5) \left(\sum_{i=0}^{n-1} c_{i} p^{i}\right) y_{m f}=y_{m}, c_{n-1}=1 \tag{5} (i=0∑n−1cipi)ymf=ym,cn−1=1(5)
接在可调系统输入端的状态变量滤波器的方程为:
( ∑ i = 0 n − 1 c i p i ) r f = r , c n − 1 = 1 (6) \left(\sum_{i=0}^{n-1} c_{i} p^{i}\right) r_{f}=r, c_{n-1}=1 \tag{6} (i=0∑n−1cipi)rf=r,cn−1=1(6)
可调系统方程为:
( ∑ i = 0 n a s i ( v , t ) p i ) y s f = ( ∑ i = 0 m b s i ( v , t ) p i ) r f , a s n ( v , t ) = 1 (7) \left(\sum_{i=0}^{n} a_{s i}(v, t) p^{i}\right) y_{s f}=\left(\sum_{i=0}^{m} b_{s i}(v, t) p^{i}\right) r_{f}, a_{s n}(v, t)=1 \tag{7} (i=0∑nasi(v,t)pi)ysf=(i=0∑mbsi(v,t)pi)rf,asn(v,t)=1(7)
广义输出误差为:
ε f = y m f − y s f (8) \varepsilon_{f}=y_{m f}-y_{s f} \tag{8} εf=ymf−ysf(8)
为保证等价的前向方块严格正实,引入串联补偿器:
v = D ( p ) ε f = ( ∑ i = 0 n − 1 d i p i ) ε f (9) v=D(p) \varepsilon_{f}=\left(\sum_{i=0}^{n-1} d_{i} p^{i}\right) \varepsilon_{f} \tag{9} v=D(p)εf=(i=0∑n−1dipi)εf(9)
对于可调系统中的可调参数 a s i ( v , t ) a_{si}(v,t) asi(v,t) 及 b s i ( v , t ) b_{si}(v,t) bsi(v,t),采取PI控制,则自适应规律为
a s i ( v , t ) = ∫ 0 t φ 1 i ( v , t , τ ) d τ + φ 2 i ( v , t ) + a s i ( 0 ) , i = 0 , 1 , ⋯ , n − 1 b s i ( v , t ) = ∫ 0 t ψ 1 i ( v , t , τ ) d τ + ψ 2 i ( v , t ) + b s i ( 0 ) , i = 0 , 1 , ⋯ , m (10) \begin{aligned} a_{s i}(v, t)&=\int_{0}^{t} \varphi_{1 i}(v, t, \tau) d \tau+\varphi_{2 i}(v, t)+a_{s i}(0), i=0,1, \cdots, n-1 \\ b_{s i}(v, t)&=\int_{0}^{t} \psi_{1 i}(v, t, \tau) d \tau+\psi_{2 i}(v, t)+b_{s i}(0), i=0,1, \cdots, m \end{aligned} \tag{10} asi(v,t)bsi(v,t)=∫0tφ1i(v,t,τ)dτ+φ2i(v,t)+asi(0),i=0,1,⋯,n−1=∫0tψ1i(v,t,τ)dτ+ψ2i(v,t)+bsi(0),i=0,1,⋯,m(10)
将参考模型与状态变量滤波器互换位置,可得到形式同(7)式的参考模型方程如下:
( ∑ i = 0 n a m i p i ) y m f = ( ∑ i = 0 m b m i p i ) r f , a m n = 1 (11) \left(\sum_{i=0}^{n} a_{m i} p^{i}\right) y_{m f}=\left(\sum_{i=0}^{m} b_{m i} p^{i}\right) r_{f}, a_{m n}=1 \tag{11} (i=0∑namipi)ymf=(i=0∑mbmipi)rf,amn=1(11)
结合(7)式,(11)式和(8)式,可推导出
( ∑ i = 0 n a m i p i ) ε f = [ ∑ i = 0 n ( a s i − a m i ) p i ] y s f + [ ∑ i = 0 n ( b m i − b s i ) p i ] r f (12) \left(\sum_{i=0}^{n} a_{m i} p^{i}\right) \varepsilon_{f}=\left[\sum_{i=0}^{n}\left(a_{s i}-a_{m i}\right) p^{i}\right] y_{s f}+\left[\sum_{i=0}^{n}\left(b_{m i}-b_{s i}\right) p^{i}\right] r_{f} \tag{12} (i=0∑namipi)εf=[i=0∑n(asi−ami)pi]ysf+[i=0∑n(bmi−bsi)pi]rf(12)
令
ω 1 = [ ∑ i = 0 n ( a s i − a m i ) p i ] y s f + [ ∑ i = 0 n ( b m i − b s i ) p i ] r f (13) \omega_{1}=\left[\sum_{i=0}^{n}\left(a_{s i}-a_{m i}\right) p^{i}\right] y_{s f}+\left[\sum_{i=0}^{n}\left(b_{m i}-b_{s i}\right) p^{i}\right] r_{f} \tag{13} ω1=[i=0∑n(asi−ami)pi]ysf+[i=0∑n(bmi−bsi)pi]rf(13)
则(12)式变成
( ∑ i = 0 n a m i p i ) ε f = ω 13 (14) \left(\sum_{i=0}^{n} a_{m i} p^{i}\right) \varepsilon_{f}=\omega_{13} \tag{14} (i=0∑namipi)εf=ω13(14)
将可调系统中的可调参数选定的自适应规律(10)式代入(13)式中,可得反馈方框的输出量 ω \omega ω 的形式如下:
ω = − ω 1 = − { ∑ i = 0 n − 1 [ ∫ 0 t φ 1 i ( v , t , τ ) d τ + φ 2 i ( v , t ) + a s i ( 0 ) − a m i ] p i } y s f + { ∑ i = 0 n − 1 [ ∫ 0 t ψ 1 i ( v , t , τ ) d τ + ψ 2 i ( v , t ) + b s i ( 0 ) − b m i ] p i } r f (15) \begin{aligned} \omega=-\omega_{1}=&-\left\{\sum_{i=0}^{n-1}\right. {\left.\left[\int_{0}^{t} \varphi_{1 i}(v, t, \tau) d \tau+\varphi_{2 i}(v, t)+a_{s i}(0)-a_{m i}\right] p^{i}\right\} y_{s f} } \\ &+\left\{\sum_{i=0}^{n-1}\left[\int_{0}^{t} \psi_{1 i}(v, t, \tau) d \tau+\psi_{2 i}(v, t)+b_{s i}(0)-b_{m i}\right] p^{i}\right\} r_{f} \end{aligned} \tag{15} ω=−ω1=−{ i=0∑n−1[∫0tφ1i(v,t,τ)dτ+φ2i(v,t)+asi(0)−ami]pi}ysf+{ i=0∑n−1[∫0tψ1i(v,t,τ)dτ+ψ2i(v,t)+bsi(0)−bmi]pi}rf(15)
由波波夫积分不等式,及引理1和引理2,可得自适应规律
φ 1 i = − k a i ( t − τ ) v ( τ ) p i y s f ( τ ) , τ ≤ t , i = 0 , 1 , ⋯ , n − 1 φ 2 i = − k a i ′ ( t ) v ( t ) p i y s f ( t ) , i = 0 , 1 , ⋯ , n − 1 ψ 1 i = k b i ( t − τ ) v ( τ ) p i r f ( τ ) , τ ≤ t , i = 0 , 1 , ⋯ , m ψ 2 i = k b i ′ ( t ) v ( t ) p i r f ( t ) , i = 0 , 1 , ⋯ , m (16) \begin{aligned} \varphi_{1 i}&=-k_{a i}(t-\tau) v(\tau) p^{i} y_{s f}(\tau), \quad \tau \leq t, i=0,1, \cdots, n-1 \\ \varphi_{2 i}&=-k_{a i}^{\prime}(t) v(t) p^{i} y_{s f}(t), \quad i=0,1, \cdots, n-1 \\ \psi_{1 i}&=k_{b i}(t-\tau) v(\tau) p^{i} r_{f}(\tau), \quad \tau \leq t, i=0,1, \cdots, m \\ \psi_{2 i}&=k_{b i}^{\prime}(t) v(t) p^{i} r_{f}(t), \quad i=0,1, \cdots, m \end{aligned} \tag{16} φ1iφ2iψ1iψ2i=−kai(t−τ)v(τ)piysf(τ),τ≤t,i=0,1,⋯,n−1=−kai′(t)v(t)piysf(t),i=0,1,⋯,n−1=kbi(t−τ)v(τ)pirf(τ),τ≤t,i=0,1,⋯,m=kbi′(t)v(t)pirf(t),i=0,1,⋯,m(16)
式中, k a i ( t − τ ) k_{a i}(t-\tau) kai(t−τ) 和 k b i ( t − τ ) k_{b i}(t-\tau) kbi(t−τ) 是正定标量积分核,它们的拉普拉斯变化式为在 s = 0 s=0 s=0 处有一极点的正实传递函数; k a i ′ k_{a i}^{\prime} kai′ 和 k b i ′ k_{b i}^{\prime} kbi′ 在 t ≥ 0 t\ge0 t≥0 时为非负标量增益。
三、问题求解
将原题中给定的参考模型和可调系统的传递函数写成输入输出方程的形式:
( 0.0 8 2 p 2 + 2 × 0.08 × 0.75 p + 1 ) y m = r ( T 1 2 p 2 + 2 T 1 ξ 1 p + 1 ) y s f = k 1 r f (17) \begin{gathered} &\left(0.08^{2} p^{2}+2 \times 0.08 \times 0.75 p+1\right) y_{m}=r \\ &\left(T_{1}^{2} p^{2}+2 T_{1} \xi_{1} p+1\right) y_{s f}=k_{1} r_{f} \end{gathered} \tag{17} (0.082p2+2×0.08×0.75p+1)ym=r(T12p2+2T1ξ1p+1)ysf=k1rf(17)
再将上式写成首一古尔维兹多项式的形式:
( p 2 + 2 × 0.08 × 0.75 0.0 8 2 p + 1 0.0 8 2 ) y m = 1 0.0 8 2 r ( p 2 + 2 T 1 ξ 1 T 1 2 + 1 T 1 2 ) y s f = k 1 T 1 2 r f (18) \begin{gathered} \left(p^{2}+\frac{2 \times 0.08 \times 0.75}{0.08^{2}} p+\frac{1}{0.08^{2}}\right) y_{m}=\frac{1}{0.08^{2}} r \\ \left(p^{2}+\frac{2 T_{1} \xi_{1}}{T_{1}^{2}}+\frac{1}{T_{1}^{2}}\right) y_{s f}=\frac{k_{1}}{T_{1}^{2}} r_{f} \end{gathered} \tag{18} (p2+0.0822×0.08×0.75p+0.0821)ym=0.0821r(p2+T122T1ξ1+T121)ysf=T12k1rf(18)
对照(7)式和(11)式,可知相关参数如下:
a m 1 = 2 × 0.08 × 0.75 0.0 8 2 = 18.75 a m 0 = 1 0.0 8 2 = 156.25 b m 0 = 1 0.0 8 2 = 156.25 a s 1 ( v , t ) = 2 T 1 ( t ) ξ 1 ( t ) T 1 2 ( t ) = 2 ( 0.8 − 0.01 t ) ( 0.036 + 0.004 t ) a s 0 ( v , t ) = 1 T 1 2 ( t ) = 1 ( 0.036 + 0.004 t ) 2 b s 0 ( v , t ) = k 1 ( t ) T 1 2 ( t ) = 1.12 − 0.008 t ( 0.036 + 0.004 t ) 2 (19) \begin{aligned} &a_{m 1}=\frac{2 \times 0.08 \times 0.75}{0.08^{2}}=18.75 \\ &a_{m 0}=\frac{1}{0.08^{2}}=156.25 \\ &b_{m 0}=\frac{1}{0.08^{2}}=156.25 \\ &a_{s 1}(v, t)=\frac{2 T_{1}(t) \xi_{1}(t)}{T_{1}^{2}(t)}=\frac{2(0.8-0.01 t)}{(0.036+0.004 t)} \\ &a_{s 0}(v, t)=\frac{1}{T_{1}^{2}(t)}=\frac{1}{(0.036+0.004 t)^{2}} \\ &b_{s 0}(v, t)=\frac{k_{1}(t)}{T_{1}^{2}(t)}=\frac{1.12-0.008 t}{(0.036+0.004 t)^{2}} \end{aligned} \tag{19} am1=0.0822×0.08×0.75=18.75am0=0.0821=156.25bm0=0.0821=156.25as1(v,t)=T12(t)2T1(t)ξ1(t)=(0.036+0.004t)2(0.8−0.01t)as0(v,t)=T12(t)1=(0.036+0.004t)21bs0(v,t)=T12(t)k1(t)=(0.036+0.004t)21.12−0.008t(19)
进而可知, a s 1 ( 0 ) ≈ 44.4 a_{s 1}(0) \approx 44.4 as1(0)≈44.4, a s 0 ( 0 ) ≈ 771.6 a_{s 0}(0) \approx 771.6 as0(0)≈771.6, b s 0 ( 0 ) ≈ 864.2 b_{s 0}(0) \approx 864.2 bs0(0)≈864.2。
设输出的广义误差为
ε f = y m f − y s f (20) \varepsilon_{f}=y_{m f}-y_{s f} \tag{20} εf=ymf−ysf(20)
串联补偿器方程为
v = D ( p ) ε f = ( d 1 p + d 0 ) ε f (21) v=D(p) \varepsilon_{f}=\left(d_{1} p+d_{0}\right) \varepsilon_{f} \tag{21} v=D(p)εf=(d1p+d0)εf(21)
选取的自适应规律如下
a s i ( v , t ) = ∫ 0 t φ 1 i ( v , t , τ ) d τ + φ 2 i ( v , t ) + a s i ( 0 ) , i = 0 , 1 b s 0 ( v , t ) = ∫ 0 t ψ 10 ( v , t , τ ) d τ + ψ 20 ( v , t ) + b s 0 ( 0 ) (22) \begin{aligned} a_{s i}(v, t)&=\int_{0}^{t} \varphi_{1 i}(v, t, \tau) d \tau+\varphi_{2 i}(v, t)+a_{s i}(0), i=0,1 \\ b_{s 0}(v, t)&=\int_{0}^{t} \psi_{10}(v, t, \tau) d \tau+\psi_{20}(v, t)+b_{s 0}(0) \end{aligned} \tag{22} asi(v,t)bs0(v,t)=∫0tφ1i(v,t,τ)dτ+φ2i(v,t)+asi(0),i=0,1=∫0tψ10(v,t,τ)dτ+ψ20(v,t)+bs0(0)(22)
参考(16)式的形式,可得可调参数的自适应规律如下:
φ 10 = − k a 0 ( t − τ ) v ( τ ) y s f ( τ ) , τ ≤ t φ 20 = − k a 0 ′ ( t ) v ( t ) y s f ( t ) φ 11 = − k a 1 ( t − τ ) v ( τ ) p y s f ( τ ) , τ ≤ t φ 21 = − k a 1 ′ ( t ) v ( t ) p y s f ( t ) ψ 10 = k b 0 ( t − τ ) v ( τ ) r f ( τ ) , τ ⩽ t ψ 20 = k b 0 ′ ( t ) v ( t ) r f ( t ) (23) \begin{aligned} \varphi_{1 0}&=-k_{a 0}(t-\tau) v(\tau) y_{sf}(\tau), \quad \tau \le t \\ \varphi_{2 0}&=-k_{a 0}^{\prime}(t) v(t) y_{s f}(t) \\ \varphi_{1 1}&=-k_{a 1}(t-\tau) v(\tau) p y_{sf}(\tau), \quad \tau \le t \\ \varphi_{2 1}&=-k_{a 1}^{\prime}(t) v(t) p y_{s f}(t) \\ \psi_{1 0}&=k_{b 0}(t-\tau) v(\tau) r_{f}(\tau), \quad \tau \leqslant t \\ \psi_{2 0}&=k_{b 0}^{\prime}(t) v(t) r_{f}(t) \end{aligned} \tag{23} φ10φ20φ11φ21ψ10ψ20=−ka0(t−τ)v(τ)ysf(τ),τ≤t=−ka0′(t)v(t)ysf(t)=−ka1(t−τ)v(τ)pysf(τ),τ≤t=−ka1′(t)v(t)pysf(t)=kb0(t−τ)v(τ)rf(τ),τ⩽t=kb0′(t)v(t)rf(t)(23)
式中, k a 0 ( t − τ ) k_{a 0}(t-\tau) ka0(t−τ)、 k a 1 ( t − τ ) k_{a 1}(t-\tau) ka1(t−τ) 和 k b 0 ( t − τ ) k_{b 0}(t-\tau) kb0(t−τ) 为正定积分核, k a 0 ′ ( t ) k_{a 0}^{\prime}(t) ka0′(t)、 k a 1 ′ ( t ) k_{a 1}^{\prime}(t) ka1′(t) 和 k b 0 ′ ( t ) k_{b 0}^{\prime}(t) kb0′(t) 对 ∀ t ≥ 0 \forall t \ge 0 ∀t≥0 均为非负标量增益。
下面再讨论一下引入的串联补偿器中的参数 d 0 d_0 d0 和 d 1 d_1 d1 的取值范围,系统的等价前向线性方块传递函数为:
h ( s ) = d 1 ( s ) + d 0 s 2 + a m 1 s + a m 0 (24) h(s)=\frac {d_1(s)+d_0} {s^2+a_{m1}s+a_{m0}} \tag{24} h(s)=s2+am1s+am0d1(s)+d0(24)
其对应的能控标准型如下:
e ˙ = A m e + b ω 1 v = d T e (25) \begin{aligned} \boldsymbol{\dot e} &= \boldsymbol{A_m} \boldsymbol{e} + b \omega_1 \\ v &= d^T \boldsymbol{e} \end{aligned} \tag{25} e˙v=Ame+bω1=dTe(25)
式中, e = [ ε ε ˙ ] \boldsymbol{e}=\left[ \begin{matrix} \varepsilon \\ \dot \varepsilon \end{matrix} \right] e=[εε˙], A m = [ 0 1 − a m 0 − a m 1 ] \boldsymbol{A_m}=\left[ \begin{matrix} 0 & 1 \\ -a_{m0} & -a_{m1} \end{matrix} \right] Am=[0−am01−am1], b = [ 0 1 ] b=\left[ \begin{matrix} 0 \\ 1 \end{matrix} \right] b=[01], d = [ d 0 d 1 ] d=\left[ \begin{matrix} d_0 \\ d_1 \end{matrix} \right] d=[d0d1]。
要求 h ( s ) h(s) h(s) 是一个严格正实传递函数,则必定存在正定对称矩阵 P P P 和 Q Q Q,使方程式(26)成立:
{ P A m + A m T P = − Q P b = d (26) \left\{ \begin{aligned} &P A_m + A_m^T P = -Q\\ &P b = d \end{aligned} \right. \tag{26} { PAm+AmTP=−QPb=d(26)
由此可解得:
d 0 > 0 , d 1 d 0 > 1 a m 1 = 0.053 (27) d_0 > 0, \quad \frac {d_1} {d_0} > \frac {1} {a_{m_1}} =0.053 \tag{27} d0>0,d0d1>am11=0.053(27)
最终搭建的仿真模型框图如 图1 所示:

具体的 Simulink 仿真文件我已上传至百度网盘中,链接如下:experiment_3.slx_免费高速下载|百度网盘-分享无限制 (baidu.com)
输入信号与广义输出误差信号如 图2 所示:

输入信号与增益信号如 图3 所示:

输入信号与可调参数1的变化曲线如 图4 所示:

输入信号与可调参数2的变化曲线如 图5 所示:

参考书目
李言俊, 张科. 自适应控制理论及应用[M]. 西北工业大学出版社, 2005.
边栏推荐
- Motion capture system for end-positioning control of flexible manipulators
- leetcode:2032. Values that appear in at least two arrays
- hyperf的启动源码分析(二)——请求如何到达控制器
- Redis与分布式:主从复制
- A detailed guide to simulating latency with SQL/JDBC
- In the future, the interviewer asks you why it is not recommended to use Select *, please answer him out loud!
- 【Pytorch】torch.argmax()用法
- Detailed guide to compare two tables using natural full join in SQL
- Tortoise speed by "template"
- Redis 】 【 publish and subscribe message
猜你喜欢
![Miller_Rabin Miller Rabin probability sieve [template]](/img/51/8dcc9f78478debf7d3dcfa6d1a23e3.png)
Miller_Rabin Miller Rabin probability sieve [template]

Selenium自动化测试之Selenium IDE
![MySQL [aggregate function]](/img/2e/8f92cedeb8c2a99ec682869c77bc67.png)
MySQL [aggregate function]

Redis与分布式:集群搭建

Open Inventor 10.12 Major Improvements - Harmony Edition

C# Get network card information NetworkInterface IPInterfaceProperties

The pre-sale of the new Hyundai Paristi is open, and safety and comfort are not lost

OpenShift 4 - 用 Operator 部署 Redis 集群

The paper manual becomes 3D animation in seconds, the latest research of Wu Jiajun of Stanford University, selected for ECCV 2022

MySQL 23 classic interviews hang the interviewer
随机推荐
BigDecimal 简介,常用方法
The use of thread pool two
一篇文章讲清楚!数据库和数据仓库到底有什么区别和联系?
C# using ComboBox control
海康摄像机取流RTSP地址规则说明
新款现代帕里斯帝预售开启,安全、舒适一个不落
OpenShift 4 - Deploy Redis Cluster with Operator
leetcode:2032. Values that appear in at least two arrays
Why do we need to sub-library and sub-table?
Detailed guide to compare two tables using natural full join in SQL
MySql总结
NPM淘宝镜像(最新版本)于2021-11-21 16:53:52发布新版本npm镜像[通俗易懂]
[QNX Hypervisor 2.2用户手册]9.13 rom
Architecture actual combat battalion module 8 message queue table structure design
为什么要分库分表?
NPM Taobao mirror (latest version) released a new version of npm mirror at 2021-11-21 16:53:52 [easy to understand]
高等数学——常用不定积分公式
Essential Learning for Getting Started with Unity Shader - Transparency Effect
Node version switching management using NVM
Nuget打包并上传教程