当前位置:网站首页>Grouping convolution and DW convolution, residuals and inverted residuals, bottleneck and linearbottleneck
Grouping convolution and DW convolution, residuals and inverted residuals, bottleneck and linearbottleneck
2022-07-06 06:26:00 【jq_ ninety-eight】
Grouping convolution (Group Convolution)
Group convolution in ResNext Used in the
First of all, it must be clear :
Conventional convolution (Convolution) The parameter quantity of is :
K*K*C_in*n
K It's the size of the convolution kernel ,C_in yes input Of channel Count ,n Is the number of convolution kernels (output Of channel Count )
The parameter quantity of block convolution is :
K*K*C_in*n*1/g
K It's the size of the convolution kernel ,C_in yes input Of channel Count ,n Is the number of convolution kernels (output Of channel Count ),g Is the number of groups
DW(Depthwise Separable Conv)+PW(Pointwise Conv) Convolution
DW Convolution is also called deep separable convolution ,DW+PW The combination of MobileNet Used in
DW The parameter quantity of convolution is :
K*K*C_in ( here C_in = n)
K It's the size of the convolution kernel ,C_in yes input Of channel Count ,DW The convolution , The number of convolution kernels and input Of channel The same number
PW The parameter quantity of convolution is :
1*1*C_in*n
PW The convolution kernel of convolution is 1*1 size ,C_in yes input Of channel Count ,n Is the number of convolution kernels (output Of channel Count )
summary
- The parameter quantity of block convolution is conventional convolution (Convolution) Parameter quantity 1/g, among g Is the number of groups
- DW The parameter quantity of convolution is conventional convolution (Convolution) Parameter quantity 1/n, among n Is the number of convolution kernels
- When in packet convolution g=C_in, n=C_in when ,DW== Grouping convolution
Residuals And Inverted Residuals
bottleneck And linearbottleneck
Bottleneck It refers to the bottleneck layer ,Bottleneck Structure is actually to reduce the number of parameters ,Bottleneck Three steps are first PW Dimensionality reduction of data , Then the convolution of conventional convolution kernel , Last PW Dimension upgrading of data ( Similar to the hourglass ).
The focus here is on health in the network ( l ) dimension -> Convolution -> l ( drop ) Dimensional structure , Rather than shortcut
Linear Bottlececk: in the light of MobileNet v2 Medium Inverted residual block The last of the structure 1*1 The convolution layer uses a linear activation function , instead of relu Activation function
边栏推荐
- Simulation volume leetcode [general] 1314 Matrix area and
- 二维码的前世今生 与 六大测试点梳理
- Isam2 and incrementalfixedlagsmooth instructions in gtsam
- Technology sharing | common interface protocol analysis
- MFC on the conversion and display of long string unsigned char and CString
- Play video with Tencent video plug-in in uni app
- QT: the program input point xxxxx cannot be located in the dynamic link library.
- Left matching principle of joint index
- keil MDK中删除添加到watch1中的变量
- 生物医学英文合同翻译,关于词汇翻译的特点
猜你喜欢
[Tera term] black cat takes you to learn TTL script -- serial port automation skill in embedded development
Error getting a new connection Cause: org. apache. commons. dbcp. SQLNestedException
B - The Suspects
私人云盘部署
全程实现单点登录功能和请求被取消报错“cancelToken“ of undefined的解决方法
MySQL之基础知识
JMeter做接口测试,如何提取登录Cookie
MySQL之数据类型
调用链监控Zipkin、sleuth搭建与整合
数据库隔离级别
随机推荐
php使用redis实现分布式锁
【MQTT从入门到提高系列 | 01】从0到1快速搭建MQTT测试环境
Simulation volume leetcode [general] 1091 The shortest path in binary matrix
Aike AI frontier promotion (2.13)
oscp raven2靶机渗透过程
基于JEECG-BOOT的list页面的地址栏参数传递
Is the test cycle compressed? Teach you 9 ways to deal with it
模拟卷Leetcode【普通】1061. 按字典序排列最小的等效字符串
Postman核心功能解析-参数化和测试报告
数据库隔离级别
Win10 cannot operate (delete, cut) files
Isam2 operation process
如何将flv文件转为mp4文件?一个简单的解决办法
[wechat applet] build a development tool environment
On weak network test of special test
F - true liars (category and search set +dp)
Isam2 and incrementalfixedlagsmooth instructions in gtsam
模拟卷Leetcode【普通】1219. 黄金矿工
一文揭开,测试外包公司的真 相
数据库-当前读与快照读