1. summary
In the previous article , A material corresponds to a drawing call instruction . Even in this case , Two 3D objects use the same material , But they use different material parameters , Then it will still cause two drawing instructions . The reason lies in , Graphics work is a state machine , The state has changed , You must perform a drawing call instruction .
GPU Instantiation is used to solve such problems : For things like grass 、 Objects like trees , They often have a large amount of data , But at the same time, there are only minor differences, such as location 、 Posture 、 Color, etc. . If you render like a regular object , There must be many drawing instructions used , Resource occupation is bound to be large . A reasonable strategy is , We specify an object that needs to be drawn , And a large number of different parameters of the object , Then draw it in a drawing call according to the parameters —— That's what's called GPU Instantiation .
2. Detailed discussion
First , We create an empty GameObject object , And attach the following script :
using UnityEngine;
// Instantiate parameters
public struct InstanceParam
{
public Color color;
public Matrix4x4 instanceToObjectMatrix; // Instantiate to the matter matrix
}
[ExecuteInEditMode]
public class Note6Main : MonoBehaviour
{
public Mesh mesh;
public Material material;
int instanceCount = 200;
Bounds instanceBounds;
ComputeBuffer bufferWithArgs = null;
ComputeBuffer instanceParamBufferData = null;
// Start is called before the first frame update
void Start()
{
instanceBounds = new Bounds(new Vector3(0, 0, 0), new Vector3(100, 100, 100));
uint[] args = new uint[5] { 0, 0, 0, 0, 0 };
bufferWithArgs = new ComputeBuffer(1, args.Length * sizeof(uint), ComputeBufferType.IndirectArguments);
int subMeshIndex = 0;
args[0] = mesh.GetIndexCount(subMeshIndex);
args[1] = (uint)instanceCount;
args[2] = mesh.GetIndexStart(subMeshIndex);
args[3] = mesh.GetBaseVertex(subMeshIndex);
bufferWithArgs.SetData(args);
InstanceParam[] instanceParam = new InstanceParam[instanceCount];
for (int i = 0; i < instanceCount; i++)
{
Vector3 position = Random.insideUnitSphere * 5;
Quaternion q = Quaternion.Euler(Random.Range(0.0f, 90.0f), Random.Range(0.0f, 90.0f), Random.Range(0.0f, 90.0f));
float s = Random.value;
Vector3 scale = new Vector3(s, s, s);
instanceParam[i].instanceToObjectMatrix = Matrix4x4.TRS(position, q, scale);
instanceParam[i].color = Random.ColorHSV();
}
int stride = System.Runtime.InteropServices.Marshal.SizeOf(typeof(InstanceParam));
instanceParamBufferData = new ComputeBuffer(instanceCount, stride);
instanceParamBufferData.SetData(instanceParam);
material.SetBuffer("dataBuffer", instanceParamBufferData);
material.SetMatrix("ObjectToWorld", Matrix4x4.identity);
}
// Update is called once per frame
void Update()
{
if(bufferWithArgs != null)
{
Graphics.DrawMeshInstancedIndirect(mesh, 0, material, instanceBounds, bufferWithArgs, 0);
}
}
private void OnDestroy()
{
if (bufferWithArgs != null)
{
bufferWithArgs.Release();
}
if(instanceParamBufferData != null)
{
instanceParamBufferData.Release();
}
}
}
This script means , Set a mesh and a material , Through randomly obtained instantiation parameters , Render multiple instances of this mesh :
GPU The key interface of instantiation is Graphics.DrawMeshInstancedIndirect().Graphics A series of interfaces of an object are Unity The bottom of the API, It needs to be called every frame .Graphics.DrawMeshInstanced() You can also draw instances , But at most, you can only draw 1023 An example . So still Graphics.DrawMeshInstancedIndirect() better .
Instantiate parameters InstanceParam and GPU Buffer parameters bufferWithArgs Are stored in one ComputeBuffer In the object .ComputeBuffe Defined a GPU Data buffer object , Ability to map to Unity Shader Medium StructuredBuffer
Shader "Custom/SimpleInstanceShader"
{
Properties
{
}
SubShader
{
Tags{"Queue" = "Geometry"}
Pass
{
CGPROGRAM
#include "UnityCG.cginc"
#pragma vertex vert
#pragma fragment frag
#pragma target 4.5
sampler2D _MainTex;
float4x4 ObjectToWorld;
struct InstanceParam
{
float4 color;
float4x4 instanceToObjectMatrix;
};
#if SHADER_TARGET >= 45
StructuredBuffer<InstanceParam> dataBuffer;
#endif
// Vertex shader input
struct a2v
{
float4 position : POSITION;
float3 normal: NORMAL;
float2 texcoord : TEXCOORD0;
};
// Vertex shader output
struct v2f
{
float4 position: SV_POSITION;
float2 texcoord: TEXCOORD0;
float4 color: COLOR;
};
v2f vert(a2v v, uint instanceID : SV_InstanceID)
{
#if SHADER_TARGET >= 45
float4x4 instanceToObjectMatrix = dataBuffer[instanceID].instanceToObjectMatrix;
float4 color = dataBuffer[instanceID].color;
#else
float4x4 instanceToObjectMatrix = float4x4(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
float4 color = float4(1.0f, 1.0f, 1.0f, 1.0f);
#endif
float4 localPosition = mul(instanceToObjectMatrix, v.position);
//float4 localPosition = v.position;
float4 worldPosition = mul(ObjectToWorld, localPosition);
v2f o;
//o.position = UnityObjectToClipPos(v.position);
o.position = mul(UNITY_MATRIX_VP, worldPosition);
o.texcoord = v.texcoord;
o.color = color;
return o;
}
fixed4 frag(v2f i) : SV_Target
{
return i.color;
}
ENDCG
}
}
Fallback "Diffuse"
}
This is an improvement from 《Unity3D Learning notes 3——Unity Shader Preliminary use of 》 Simple instantiation shader . The position of instantiated drawing is often not fixed , It means Shader Model matrix obtained in UNITY_MATRIX_M It is generally incorrect . Therefore, the key of instantiation rendering is to recalculate the model matrix , Otherwise, the drawing position is incorrect . The instantiated data is often located close , So you can first pass in a reference position ( matrix ObjectToWorld), Then the instantiated data can only be passed into the relative matrix of this position (instanceToObjectMatrix).
The final running results are as follows , Lots of different positions are drawn 、 Different posture 、 Capsules of different sizes and colors , And the performance is basically unaffected .