当前位置:网站首页>强化學習基礎記錄
强化學習基礎記錄
2022-07-06 13:52:00 【喜歡庫裏的强化小白】
强化學習中Q-learning和Saras的對比
多智能體强化學習小白一枚,最近在學習强化學習基礎,在此記錄,以防忘記。
一、Q-learning
Q-learing最基礎的强化學習算法,通過Q錶存儲狀態-動作價值,即Q(s,a),可以用在狀態空間較小的問題上,當狀態空間維度很大時,需要配合神經網絡,擴展成DQN算法,處理問題。
- Value-based
- Off-Policy
看了很多有關On-Policy和Off-Policy的博客,一直沒太理解二者的區別,搞得一頭霧水,前兩天看了一個博主的回答,才有了更深入的理解,這裏附上鏈接。
鏈接: on-policy和off-policy有什麼區別?
當Q-learning更新時,雖然用到的數據是當前policy產生的,但是所更新的策略不是產生這些數據的策略(注意更新公式中的max),這裏可以這樣理解:這裏的max操作是為了選取能够獲得更大Q值的動作,更新Q錶,但實際回合未必會采取改改動,所以是Off-Policy的。 - 偽代碼
- 實現
這裏用的環境是莫煩老師教程裏的尋寶遊戲,通過列錶進行維護,—#-T,其中最後一個比特置T是寶藏,#代錶玩家現處的比特置,走到最右格,發現寶藏,遊戲結束。
代碼實現參考了一個博主,找不到鏈接了。。。。。
import numpy as np
import pandas as pd
import time
N_STATES = 6 # 6個狀態,一維數組長度
ACTIONS = [-1, 1] # 兩個狀態,-1:left, 1:right
epsilon = 0.9 # greedy
alpha = 0.1 # 學習率
gamma = 0.9 # 獎勵遞减值
max_episodes = 10 # 最大回合數
fresh_time = 0.3 # 移動間隔時間
# q_table
q_table = pd.DataFrame(np.zeros((N_STATES, len(ACTIONS))), columns=ACTIONS)
# choose action: 1. 隨機探索以及對於沒有探索過的比特置進行探索,否則選擇reward最大的那個動作
def choose_action(state, table):
state_actions = table.iloc[state, :]
if np.random.uniform() > epsilon or state_actions.all() == 0:
action = np.random.choice(ACTIONS)
else:
action = state_actions.argmax()
return action
def get_env_feedback(state, action):
#新狀態 = 當前狀態 + 移動狀態
new_state = state + action
reward = 0
#右移加0.5
#往右移動,更靠近寶藏,獲得+0.5獎勵
if action > 0:
reward += 0.5
#往左移動,遠離寶藏,獲得-0.5獎勵
if action < 0:
reward -= 0.5
#下一步到達寶藏,給予最高獎勵+1
if new_state == N_STATES - 1:
reward += 1
#如果向左走到頭,還要左移,獲得最低負獎勵-1
#同時注意,要定義一下新狀態還在此,不然會報錯
if new_state < 0:
new_state = 0
reward -= 1
return new_state, reward
def update_env(state, epoch, step):
env_list = ['-'] * (N_STATES - 1) + ['T']
if state == N_STATES - 1:
# 達到目的地
print("")
print("epoch=" + str(epoch) + ", step=" + str(step), end='')
time.sleep(2)
else:
env_list[state] = '#'
print('\r' + ''.join(env_list), end='')
time.sleep(fresh_time)
def q_learning():
for epoch in range(max_episodes):
step = 0 # 移動步驟
state = 0 # 初始狀態
update_env(state, epoch, step)
while state != N_STATES - 1:
cur_action = choose_action(state, q_table)
new_state, reward = get_env_feedback(state, cur_action)
q_pred = q_table.loc[state, cur_action]
if new_state != N_STATES - 1:
q_target = reward + gamma * q_table.loc[new_state, :].max()
else:
q_target = reward
q_table.loc[state, cur_action] += alpha * (q_target - q_pred)
state = new_state
update_env(state, epoch, step)
step += 1
return q_table
q_learning()
二、Saras
Saras也是强化學習中最基礎的算法,同時也是用Q錶存儲Q(s,a),這裏之所以叫Saras,是因為一個transition包含(s,a,r,a,s)五元組,即Saras。
- Value-based
- On-Policy
這裏對比Q-learning,我們便可知道,這裏用到的數據是當前policy產生的,且更新Q值的時候,是基於新動作和新狀態的Q值,新動作會被執行(注意更新公式中沒有max),所以是On-Policy。 - 偽代碼
- 實現
這裏參考Q-learning做了簡單修改,這裏要基於新的狀態,重新選擇一次動作,而且要執行該動作,此外更新Q值的時候,直接基於該狀態和動作對應的Q值更新。
import numpy as np
import pandas as pd
import time
N_STATES = 6 # 6個狀態,一維數組長度
ACTIONS = [-1, 1] # 兩個狀態,-1:left, 1:right
epsilon = 0.9 # greedy
alpha = 0.1 # 學習率
gamma = 0.9 # 獎勵遞减值
max_episodes = 10 # 最大回合數
fresh_time = 0.3 # 移動間隔時間
# q_table
#生成(N_STATES,len(ACTIONS)))的Q值空錶
q_table = pd.DataFrame(np.zeros((N_STATES, len(ACTIONS))), columns=ACTIONS)
# choose action:
#0.9概率貪心,0.1概率隨機選擇動作,保持一定探索性
def choose_action(state, table):
state_actions = table.iloc[state, :]
if np.random.uniform() > epsilon or state_actions.all() == 0:
action = np.random.choice(ACTIONS)
else:
action = state_actions.argmax()
return action
def get_env_feedback(state, action):
#新狀態 = 當前狀態 + 移動狀態
new_state = state + action
reward = 0
#右移加0.5
#往右移動,更靠近寶藏,獲得+0.5獎勵
if action > 0:
reward += 0.5
#往左移動,遠離寶藏,獲得-0.5獎勵
if action < 0:
reward -= 0.5
#下一步到達寶藏,給予最高獎勵+1
if new_state == N_STATES - 1:
reward += 1
#如果向左走到頭,還要左移,獲得最低負獎勵-1
#同時注意,要定義一下新狀態還在此,不然會報錯
if new_state < 0:
new_state = 0
reward -= 1
return new_state, reward
#維護環境
def update_env(state, epoch, step):
env_list = ['-'] * (N_STATES - 1) + ['T']
if state == N_STATES - 1:
# 達到目的地
print("")
print("epoch=" + str(epoch) + ", step=" + str(step), end='')
time.sleep(2)
else:
env_list[state] = '#'
print('\r' + ''.join(env_list), end='')
time.sleep(fresh_time)
#更新Q錶
def Saras():
for epoch in range(max_episodes):
step = 0 # 移動步驟
state = 0 # 初始狀態
update_env(state, epoch, step)
cur_action = choose_action(state, q_table)
while state != N_STATES - 1:
new_state, reward = get_env_feedback(state, cur_action)
new_action = choose_action(new_state,q_table)
q_pred = q_table.loc[state, cur_action]
if new_state != N_STATES - 1:
q_target = reward + gamma * q_table.loc[new_state, new_action]
else:
q_target = reward
q_table.loc[state, cur_action] += alpha * (q_target - q_pred)
state,cur_action = new_state,new_action
update_env(state, epoch, step)
step += 1
return q_table
Saras()
第一次寫博客,可能理解存在問題,還望指正錯誤。
边栏推荐
猜你喜欢
Nuxtjs快速上手(Nuxt2)
Change vs theme and set background picture
透彻理解LRU算法——详解力扣146题及Redis中LRU缓存淘汰
9. Pointer (upper)
4. Branch statements and loop statements
6. Function recursion
Thoroughly understand LRU algorithm - explain 146 questions in detail and eliminate LRU cache in redis
7-5 走楼梯升级版(PTA程序设计)
一段用蜂鸣器编的音乐(成都)
C language Getting Started Guide
随机推荐
About the parental delegation mechanism and the process of class loading
【手撕代码】单例模式及生产者/消费者模式
稻 城 亚 丁
[面試時]——我如何講清楚TCP實現可靠傳輸的機制
This time, thoroughly understand the MySQL index
Get started with typescript
【MySQL-表结构与完整性约束的修改(ALTER)】
js判断对象是否是数组的几种方式
Service ability of Hongmeng harmonyos learning notes to realize cross end communication
Write a program to simulate the traffic lights in real life.
The latest tank battle 2022 - full development notes-3
实验五 类和对象
[the Nine Yang Manual] 2020 Fudan University Applied Statistics real problem + analysis
抽象类和接口的区别
fianl、finally、finalize三者的区别
7-3 构造散列表(PTA程序设计)
Leetcode.3 无重复字符的最长子串——超过100%的解法
Inaki Ading
简述xhr -xhr的基本使用
【九阳神功】2020复旦大学应用统计真题+解析