当前位置:网站首页>The first simple case of GNN: Cora classification
The first simple case of GNN: Cora classification
2022-07-06 11:59:00 【Want to be a kite】
GNN–Cora classification
Cora The dataset is GNN A classic dataset in , take 2708 The papers are divided into seven categories :1) Based on the case 、2) Genetic algorithm (ga) 、3) neural network 、4) Probability method 、5)、 Reinforcement learning 、6) Rule learning 、7) theory . Each paper is regarded as a node , Each node has 1433 Features .
import os
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.datasets import Planetoid
import torch_geometric.nn as pyg_nn
#load Cora dataset
def get_data(root_dir='D:\Python\python_dataset\GNN_Dataset\Cora',data_name='Cora'):
Cora_dataset = Planetoid(root=root_dir,name=data_name)
print(Cora_dataset)
return Cora_dataset
Cora_dataset = get_data()
print(Cora_dataset.num_classes,Cora_dataset.num_node_features,Cora_dataset.num_edge_features)
print(Cora_dataset.data)
Cora()
7 1433 0
Data(x=[2708, 1433], edge_index=[2, 10556], y=[2708], train_mask=[2708], val_mask=[2708], test_mask=[2708])
The code gives GCN、GAT、SGConv、ChebConv、SAGEConv Simple implementation of
import os
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.datasets import Planetoid
import torch_geometric.nn as pyg_nn
#load Cora dataset
def get_data(root_dir='D:\Python\python_dataset\GNN_Dataset\Cora',data_name='Cora'):
Cora_dataset = Planetoid(root=root_dir,name=data_name)
print(Cora_dataset)
return Cora_dataset
#create the Graph cnn model
""" 2-GATConv """
# class GATConv(nn.Module):
# def __init__(self,in_c,hid_c,out_c):
# super(GATConv,self).__init__()
# self.GATConv1 = pyg_nn.GATConv(in_channels=in_c,out_channels=hid_c)
# self.GATConv2 = pyg_nn.GATConv(in_channels=hid_c, out_channels=hid_c)
#
# def forward(self,data):
# x = data.x
# edge_index = data.edge_index
# hid = self.GATConv1(x=x,edge_index=edge_index)
# hid = F.relu(hid)
#
# out = self.GATConv2(hid,edge_index=edge_index)
# out = F.log_softmax(out,dim=1)
#
# return out
""" 2-SAGE 0.788 """
# class SAGEConv(nn.Module):
# def __init__(self,in_c,hid_c,out_c):
# super(SAGEConv,self).__init__()
# self.SAGEConv1 = pyg_nn.SAGEConv(in_channels=in_c,out_channels=hid_c)
# self.SAGEConv2 = pyg_nn.SAGEConv(in_channels=hid_c, out_channels=hid_c)
#
# def forward(self,data):
# x = data.x
# edge_index = data.edge_index
# hid = self.SAGEConv1(x=x,edge_index=edge_index)
# hid = F.relu(hid)
#
# out = self.SAGEConv2(hid,edge_index=edge_index)
# out = F.log_softmax(out,dim=1)
#
# return out
""" 2-SGConv 0.79 """
class SGConv(nn.Module):
def __init__(self,in_c,hid_c,out_c):
super(SGConv,self).__init__()
self.SGConv1 = pyg_nn.SGConv(in_channels=in_c,out_channels=hid_c)
self.SGConv2 = pyg_nn.SGConv(in_channels=hid_c, out_channels=hid_c)
def forward(self,data):
x = data.x
edge_index = data.edge_index
hid = self.SGConv1(x=x,edge_index=edge_index)
hid = F.relu(hid)
out = self.SGConv2(hid,edge_index=edge_index)
out = F.log_softmax(out,dim=1)
return out
""" 2-ChebConv """
# class ChebConv(nn.Module):
# def __init__(self,in_c,hid_c,out_c):
# super(ChebConv,self).__init__()
#
# self.ChebConv1 = pyg_nn.ChebConv(in_channels=in_c,out_channels=hid_c,K=1)
# self.ChebConv2 = pyg_nn.ChebConv(in_channels=hid_c,out_channels=out_c,K=1)
#
# def forward(self,data):
# x = data.x
# edge_index = data.edge_index
# hid = self.ChebConv1(x=x,edge_index=edge_index)
# hid = F.relu(hid)
#
# out = self.ChebConv2(hid,edge_index=edge_index)
# out = F.log_softmax(out,dim=1)
#
# return out
""" 2-GCN """
# class GraphCNN(nn.Module):
# def __init__(self, in_c,hid_c,out_c):
# super(GraphCNN,self).__init__()
#
# self.conv1 = pyg_nn.GCNConv(in_channels=in_c,out_channels=hid_c)
# self.conv2 = pyg_nn.GCNConv(in_channels=hid_c,out_channels=out_c)
#
# def forward(self,data):
# #data.x,data.edge_index
# x = data.x # [N,C]
# edge_index = data.edge_index # [2,E]
# hid = self.conv1(x=x,edge_index=edge_index) #[N,D]
# hid = F.relu(hid)
#
# out = self.conv2(hid,edge_index=edge_index) # [N,out_c]
#
# out = F.log_softmax(out,dim=1)
#
# return out
def main():
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
Cora_dataset = get_data()
#my_net = GATConv(in_c=Cora_dataset.num_node_features, hid_c=100, out_c=Cora_dataset.num_classes)
#my_net = SAGEConv(in_c=Cora_dataset.num_node_features, hid_c=40, out_c=Cora_dataset.num_classes)
my_net = SGConv(in_c=Cora_dataset.num_node_features,hid_c=100,out_c=Cora_dataset.num_classes)
#my_net = ChebConv(in_c=Cora_dataset.num_node_features,hid_c=20,out_c=Cora_dataset.num_classes)
# my_net = GraphCNN(in_c=Cora_dataset.num_node_features,hid_c=12,out_c=Cora_dataset.num_classes)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
my_net = my_net.to(device)
data = Cora_dataset[0].to(device)
optimizer = torch.optim.Adam(my_net.parameters(),lr=1e-3)
#model train
my_net.train()
for epoch in range(500):
optimizer.zero_grad()
output = my_net(data)
loss = F.nll_loss(output[data.train_mask],data.y[data.train_mask])
loss.backward()
optimizer.step()
print("Epoch",epoch+1,"Loss",loss.item())
#model test
my_net.eval()
_,prediction = my_net(data).max(dim=1)
target = data.y
test_correct = prediction[data.test_mask].eq(target[data.test_mask]).sum().item()
test_number = data.test_mask.sum().item()
print("Accuracy of Test Sample:",test_correct/test_number)
if __name__ == '__main__':
main()
Cora()
Epoch 1 Loss 4.600048542022705
Epoch 2 Loss 4.569146156311035
Epoch 3 Loss 4.535804271697998
Epoch 4 Loss 4.498434543609619
Epoch 5 Loss 4.456351280212402
Epoch 6 Loss 4.409425258636475
Epoch 7 Loss 4.357522964477539
Epoch 8 Loss 4.3007612228393555
Epoch 9 Loss 4.2392096519470215
Epoch 10 Loss 4.172731876373291
Epoch 11 Loss 4.101400375366211
Epoch 12 Loss 4.025243282318115
...............
Epoch 494 Loss 0.004426263272762299
Epoch 495 Loss 0.004407935775816441
Epoch 496 Loss 0.004389731213450432
Epoch 497 Loss 0.004371633753180504
Epoch 498 Loss 0.004353662021458149
Epoch 499 Loss 0.0043357922695577145
Epoch 500 Loss 0.004318032879382372
Accuracy of Test Sample: 0.794
边栏推荐
- TypeScript
- Matlab learning and actual combat notes
- XML file explanation: what is XML, XML configuration file, XML data file, XML file parsing tutorial
- 电商数据分析--薪资预测(线性回归)
- ESP8266使用arduino连接阿里云物联网
- Nodejs connect mysql
- Linux yum安装MySQL
- 5G工作原理详解(解释&图解)
- Detailed explanation of express framework
- Principle and implementation of MySQL master-slave replication
猜你喜欢
随机推荐
Unit test - unittest framework
2020 WANGDING cup_ Rosefinch formation_ Web_ nmap
Reno7 60W super flash charging architecture
Using LinkedHashMap to realize the caching of an LRU algorithm
Word排版(小計)
FreeRTOS 任务函数里面的死循环
Variable star user module
荣耀Magic 3Pro 充电架构分析
[NPUCTF2020]ReadlezPHP
电商数据分析--薪资预测(线性回归)
MySQL主从复制的原理以及实现
TypeScript
PyTorch四种常用优化器测试
Those commonly used tool classes and methods in hutool
Bubble sort [C language]
ESP8266使用arduino连接阿里云物联网
Pytoch Foundation
GNN的第一个简单案例:Cora分类
Connexion sans mot de passe du noeud distribué
Basic knowledge of lithium battery