当前位置:网站首页>Implement your own dataset using bisenet
Implement your own dataset using bisenet
2022-07-07 08:23:00 【I am a little rice】
Data set preparation
Data sets : Remote sensing house image segmentation , There are two times , It is mainly to realize the area change of building area with time .
Baidu cloud :https://pan.baidu.com/s/1HlnKWToc00986jiTxhq_CA
Extraction code :RSAI
Data processing
1. Data sets
The data set is stored in the root directory datasets
Under the folder , And coco
and city
Data set juxtaposition , If the label of your dataset is already 0,1
, Then don't worry label_255
, If the label has not passed 255-->1
The transformation of , You can put the label file in label_255
Next .
—BiSeNet
---------datasets
-----------------coco
-----------------cityscapes
-----------------time
-----------------------train
------------------------------image
------------------------------label_255
------------------------------label
-----------------------val
------------------------------image
------------------------------label_255
------------------------------label
2. stay datasets/times/
Create under folder one.py
The aim is to 0,255
The label of is converted to 0,1
, If it's multi class , Then the label is 0,1,2,3,...n
In the code, only train
Documents in , To transform val Documents in , modify train
by val
that will do
import os
import cv2 as cv
labels_path = './train/label_255'
labels_save_path = './train/label'
lab_names = os.listdir(labels_path)
for s in lab_names:
label_path = os.path.join(labels_path, s)
label_save_path = os.path.join(labels_save_path, s)
label = cv.imread(label_path, 0)
label[label!=0]=1
cv.imwrite(label_save_path, label)
2. stay datasets/times/
Create under folder util.py
file
The goal is to generate train.txt
Document and val.txt
file , To transform val.txt
file , Just add all of the following code train
Switch to val
that will do ( There are three )
import os
image_path = './train/image'
label_path = './train/label'
image_names = os.listdir(image_path)
for s in image_names:
image = os.path.join(image_path, s)
label = os.path.join(label_path, s)
with open('train.txt', 'a') as fin:
fin.write(image[2:] +","+ label[2:] +"\n")
fin.close()
Network model address
Model modification
1. modify configs/bisenet_customer.py
file
n_cats
: Number of categories including background , The category here is 2
max_iter
: Training times im_root
: Data path train_im_anns
: Just generated train.txt route val_im_anns
: Just generated val.txt route cropsize
: Change to image size eval_crop
: Change to image size ( I don't know the effect )ims_per_gpu:gpu
Number
2. Modify category
This dataset category is 2
If configs/bisenet_customer.py
Medium model_type='bisenetv2'
modify lib/models/bisenetv2.py
In the document n_classes=2
If configs/bisenet_customer.py
Medium model_type='bisenetv1'
modify lib/models/bisenetv1.py
In the document BiSeNetV1(2)
Run the command
--nproc_per_node
Do not know what that mean? , there 2
yes gpu
The number of
CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 tools/train_amp.py --config configs/bisenet_customer.py
And it's going to work !!
边栏推荐
- 面试题(CAS)
- Register of assembly language by Wang Shuang
- Complex network modeling (I)
- One click deployment of highly available emqx clusters in rainbow
- Famine cloud service management script
- Rainbow combines neuvector to practice container safety management
- Make LIVELINK's initial pose consistent with that of the mobile capture actor
- PVTV2--Pyramid Vision TransformerV2学习笔记
- offer收割机:两个长字符串数字相加求和(经典面试算法题)
- Lua 编程学习笔记
猜你喜欢
Interactive book delivery - signed version of Oracle DBA work notes
Give full play to the wide practicality of maker education space
Application of slip ring of shipborne radar antenna
[quick start of Digital IC Verification] 12. Introduction to SystemVerilog testbench (svtb)
Lua programming learning notes
eBPF Cilium实战(1) - 基于团队的网络隔离
Basic use of CTF web shrink template injection nmap
Open3D ISS关键点
电池、电机技术受到很大关注,反而电控技术却很少被提及?
opencv学习笔记三——图像平滑/去噪处理
随机推荐
Uniapp mobile terminal forced update function
Rsync remote synchronization
使用BiSeNet实现自己的数据集
Openjudge noi 2.1 1752: chicken and rabbit in the same cage
【雅思口语】安娜口语学习记录 Part3
Complex network modeling (I)
Openvscode cloud ide joins rainbow integrated development system
Rainbond 5.6 版本发布,增加多种安装方式,优化拓扑图操作体验
Qinglong panel -- Huahua reading
PVTV2--Pyramid Vision TransformerV2学习笔记
[quick start of Digital IC Verification] 14. Basic syntax of SystemVerilog learning 1 (array, queue, structure, enumeration, string... Including practical exercises)
It's too true. There's a reason why I haven't been rich
漏洞複現-Fastjson 反序列化
opencv学习笔记五——梯度计算/边缘检测
Réplication de vulnérabilité - désrialisation fastjson
buureservewp(2)
IELTS review progress and method use [daily revision]
The truth of robot education in hands-on practice
Zcmu--1492: problem d (C language)
Rainbow version 5.6 was released, adding a variety of installation methods and optimizing the topology operation experience