当前位置:网站首页>2022 The 4th C.Easy Counting Problem (EGF+NTT)
2022 The 4th C.Easy Counting Problem (EGF+NTT)
2022-08-05 05:11:00 【The wonderful sauce of eating peppercorns】
题意:give a charset,大小不超过10,第icharacters appear no less than ci,求字符串长度为n的方案数,至多300个询问,ci<=5000,n<=1e7
(Pictures are not copied,I don't know if the competition for money will be held==)
思路:指数生成函数
由egf定义,第k个字符的egf为 f ( k ) = ∑ c k + o o x i i ! f(k)=\sum_{c_k}^{+oo}\frac{x^i}{i!} f(k)=∑ck+ooi!xi
则答案为 [ x n n ! ] ∏ k = 1 w f ( k ) , w 为字符集大小 [\frac{x^n}{n!}]\prod_{k=1}^w{f(k)},w为字符集大小 [n!xn]∏k=1wf(k),w为字符集大小
但是n比较大,It's definitely not possible to roll directly.改写一下f(k)的形式
f ( k ) = e x p ( x ) − ∑ i = 0 c k − 1 x i i ! f(k)=exp(x)-\sum_{i=0}^{c_k-1}\frac{x^i}{i!} f(k)=exp(x)−∑i=0ck−1i!xi
可以将exp(x)看成一个整体,The final answer is in the form
∑ i = 0 w g ( i ) ∗ e x p ( x ) i = ∑ i = 0 w g ( i ) ∗ e x p ( i x ) , 其中 g ( i ) 是一个多项式 \sum_{i=0}^wg(i)*exp(x)^i=\sum_{i=0}^wg(i)*exp(ix),其中g(i)是一个多项式 ∑i=0wg(i)∗exp(x)i=∑i=0wg(i)∗exp(ix),其中g(i)是一个多项式
g(i)The maximum number of times does not exceed ∑ c i \sum{c_i} ∑ci,而exp(ix)Each coefficient of is known,Then just loop over eachg(i)The coefficient of the term is multiplied byexp(ix)Corresponding coefficients are sufficient.最后别忘了乘n!
The specific spelling can be used for referencedp的思路,设dpij表示前i个fThe formula obtained by multiplyingexp(jx)What is the coefficient of ,There is a polynomial
转移方程 d p i , j = d p i − 1 , j − d p i , j − 1 ∗ ∑ k = 0 c i − 1 x k k ! dp_{i,j}=dp_{i-1,j} - dp_{i,j-1}*\sum_{k=0}^{c_i-1}\frac{x^k}{k!} dpi,j=dpi−1,j−dpi,j−1∗∑k=0ci−1k!xk,In fact, it is just a simulation of polynomial violence,This way of thinking a little clearer.
复杂度 O ( w 2 s l o g s + q w s ) , s = ∑ c i O(w^2slogs+qws),s=\sum{ci} O(w2slogs+qws),s=∑ci
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define IOS ios::sync_with_stdio(false),cin.tie(nullptr)
#define _for(i,a,b) for(int i=(a) ;i<=(b) ;i++)
#define _rep(i,a,b) for(int i=(a) ;i>=(b) ;i--)
#define mst(v,s) memset(v,s,sizeof(v))
#define pii pair<int ,int >
#define pb(v) push_back(v)
#define all(v) v.begin(),v.end()
#define int long long
#define inf 0x3f3f3f3f
#define INF 0x7f7f7f7f7f7f7f7f
#define endl "\n"
#define fi first
#define se second
#define ls p<<1
#define rs p<<1|1
#define lson p<<1,l,mid
#define rson p<<1|1,mid+1,r
#define AC return 0
#define ldb long double
const int maxn = 6e6+10;
const int p = 998244353;
const int mod = 998244353;
int Pow(int x,int d){
int tans = 1;
if(d == 0)return 1%p;
int a = Pow(x,d/2);
tans = 1ll*a*a%p;
if(d%2)tans = 1ll*tans*x%p;
return tans%p;
}
typedef vector<int> Poly;//多项式定义
inline Poly operator + (const Poly&A ,const Poly&B){
Poly res (max(A.size(),B.size()),0);
for(int i=0 ;i<max(A.size(),B.size()) ;i++){
if( i < A.size() && i<B.size() ) res[i] = (A[i]+B[i])%mod;
else if( i >= A.size() ){
res[i] = B[i];
}
else res[i] = A[i];
}
return res;
}
inline Poly operator - (const Poly&A ,const Poly&B){
Poly res (max(A.size(),B.size()),0);
for(int i=0 ;i<max(A.size(),B.size()) ;i++){
if( i < A.size() && i<B.size() ) res[i] = (A[i]-B[i]+mod)%mod;
else if( i >= A.size() ){
res[i] = (mod-B[i])%mod;
}
else res[i] = A[i];
}
return res;
}
int F1[maxn],F2[maxn];
int rev[maxn];
void NTT(int * A,int lim,int opt) {
int i, j, k, m, gn, g, tmp;
for(int i = 0; i < lim; ++i)rev[i] = (i & 1)*(lim >> 1) + (rev[i >> 1] >> 1);
for(i = 0; i < lim; ++i)if (rev[i] < i) swap(A[i], A[rev[i]]);
for(m = 2; m <= lim; m <<= 1) {
k = m >> 1;
gn = Pow(3,(p - 1) / m);
for(i = 0; i < lim; i += m) {
g = 1;
for (j = 0; j < k; ++j, g = 1ll * g * gn % p) {
tmp = 1ll * A[i + j + k] * g % p;
A[i + j + k] = (A[i + j] - tmp + p) % p;
A[i + j] = (A[i + j] + tmp) % p;
}
}
}
if(opt == -1){
reverse(A+1,A+lim);
int inv = Pow(lim,p-2);
for(i = 0; i < lim; ++i) A[i] = 1ll * A[i] * inv % p;
}
}
Poly mul(const Poly & A,const Poly & B){
int n = A.size(),m = B.size();
int siz = n + m - 1;
Poly C(siz);
if(siz < 64){
//小于等于64项直接暴力算
for(int i = 0;i < n;i++){
for(int j = 0;j < m;j++)C[i+j] = (C[i+j] + 1LL*A[i]*B[j]%p)%p;
}
return C;
}
int fsiz = 1;
while(fsiz <= siz)fsiz *= 2;
for(int i = 0;i < fsiz;i++)F1[i] = F2[i] = 0;
for(int i = 0;i < n;i++)F1[i] = A[i];
for(int i = 0;i < m;i++)F2[i] = B[i];
NTT(F1,fsiz,1);
NTT(F2,fsiz,1);
for(int i = 0;i < fsiz;i++)F1[i] = 1ll*F1[i]*F2[i]%p;
NTT(F1,fsiz,-1);
for(int i = 0;i < siz;i++){
C[i] = F1[i];
}
return C;
}
const int N = 5e5+10;
const int M = 1e7+5;
int W,n;
int c[11],fac[M],ni_f[M];
int mi[11][M];
Poly f[11][11];
ll qsm(int a,int b){
a %= mod;
ll ans=1,tmp=a;
while( b ){
if( b&1 ) ans = (ans * tmp)%mod;
tmp = tmp * tmp%mod;
b>>=1;
}
return ans;
}
void ini(){
int mx = 1e7;
fac[0]=1;
_for(i,1,mx) fac[i] = fac[i-1]*i%mod;
ni_f[mx] = qsm(fac[mx],mod-2);
_rep(i,mx-1,0) ni_f[i] = ni_f[i+1]*(i+1)%mod;
}
int S;
void ff(Poly F){
F.resize(min(S+1,(int)F.size()));
}
void solve(){
f[1][1].resize(1,1);
f[1][0].resize(c[1]+1,0);
_for(i,0,c[1]-1){
f[1][0][i] = (mod-ni_f[i])%mod;
}
_for(i,2,W){
_for(j,0,i){
Poly t (c[i]+1,0);
_for(k,0,c[i]-1){
t[k] = (mod-ni_f[k])%mod;
}
f[i][0] = mul(f[i-1][0],t);
ff(f[i][0]);
f[i][j] = (f[i-1][j-1] + mul(f[i-1][j],t));
ff(f[i][j]);
}
}
}
int Q(int n){
int ans=0;
for(int i=0 ;i<=W ;i++){
// exp(ix)
int pw = qsm(i,n-min(n,(int)f[W][i].size()-1ll));
for(int j=min(n,(int)f[W][i].size()-1ll) ;j>=0 ;j--){
int t = n-j;
if( j < min(n,(int)f[W][i].size()-1ll) ) pw = pw * i%mod;
ans = (ans + f[W][i][j] * pw %mod*ni_f[t]%mod)%mod;
}
}
return ans*fac[n]%mod;
}
signed main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif
IOS;
cin>>W;
_for(i,1,W) cin>>c[i];
S = accumulate(c+1,c+1+W,0ll);
ini();
solve();
int q;cin>>q;
while( q-- ){
int x;cin>>x;
int ans = Q(x);
cout<<ans<<endl;
}
AC;
}
边栏推荐
- uva1325
- shell函数
- [Surveying] Quick Summary - Excerpt from Gaoshu Gang
- Error creating bean with name ‘configDataContextRefresher‘ defined in class path resource
- Flutter真机运行及模拟器运行
- 基于Web的商城后台管理系统的设计与实现
- server disk array
- 人性的弱点
- Community Sharing|Tencent Overseas Games builds game security operation capabilities based on JumpServer
- dedecms dream weaving tag tag does not support capital letters fix
猜你喜欢
随机推荐
Difference between for..in and for..of
Redis哨兵模式配置文件详解
[Nine Lectures on Backpacks - 01 Backpack Problems]
Excel Paint
【微信小程序】WXML模板语法-条件渲染
Talk about 20 common problems in data governance
Flutter学习-开篇
Using QR codes to solve fixed asset management challenges
Detailed explanation of each module of ansible
Redis - 13、开发规范
write the story about us
How to quickly upgrade your Taobao account to a higher level
uva1325
uboot开启调试打印信息
App rapid development and construction experience: the importance of small programs + custom plug-ins
【cesium】3D Tileset 模型加载并与模型树关联
mutillidae download and installation
Judgment statement _switch and case
MySQL Foundation (1) - Basic Cognition and Operation
二叉树基本性质+oj题解析









