当前位置:网站首页>2022 The 4th C.Easy Counting Problem (EGF+NTT)
2022 The 4th C.Easy Counting Problem (EGF+NTT)
2022-08-05 05:11:00 【The wonderful sauce of eating peppercorns】
题意:give a charset,大小不超过10,第icharacters appear no less than ci,求字符串长度为n的方案数,至多300个询问,ci<=5000,n<=1e7
(Pictures are not copied,I don't know if the competition for money will be held==)
思路:指数生成函数
由egf定义,第k个字符的egf为 f ( k ) = ∑ c k + o o x i i ! f(k)=\sum_{c_k}^{+oo}\frac{x^i}{i!} f(k)=∑ck+ooi!xi
则答案为 [ x n n ! ] ∏ k = 1 w f ( k ) , w 为字符集大小 [\frac{x^n}{n!}]\prod_{k=1}^w{f(k)},w为字符集大小 [n!xn]∏k=1wf(k),w为字符集大小
但是n比较大,It's definitely not possible to roll directly.改写一下f(k)的形式
f ( k ) = e x p ( x ) − ∑ i = 0 c k − 1 x i i ! f(k)=exp(x)-\sum_{i=0}^{c_k-1}\frac{x^i}{i!} f(k)=exp(x)−∑i=0ck−1i!xi
可以将exp(x)看成一个整体,The final answer is in the form
∑ i = 0 w g ( i ) ∗ e x p ( x ) i = ∑ i = 0 w g ( i ) ∗ e x p ( i x ) , 其中 g ( i ) 是一个多项式 \sum_{i=0}^wg(i)*exp(x)^i=\sum_{i=0}^wg(i)*exp(ix),其中g(i)是一个多项式 ∑i=0wg(i)∗exp(x)i=∑i=0wg(i)∗exp(ix),其中g(i)是一个多项式
g(i)The maximum number of times does not exceed ∑ c i \sum{c_i} ∑ci,而exp(ix)Each coefficient of is known,Then just loop over eachg(i)The coefficient of the term is multiplied byexp(ix)Corresponding coefficients are sufficient.最后别忘了乘n!
The specific spelling can be used for referencedp的思路,设dpij表示前i个fThe formula obtained by multiplyingexp(jx)What is the coefficient of ,There is a polynomial
转移方程 d p i , j = d p i − 1 , j − d p i , j − 1 ∗ ∑ k = 0 c i − 1 x k k ! dp_{i,j}=dp_{i-1,j} - dp_{i,j-1}*\sum_{k=0}^{c_i-1}\frac{x^k}{k!} dpi,j=dpi−1,j−dpi,j−1∗∑k=0ci−1k!xk,In fact, it is just a simulation of polynomial violence,This way of thinking a little clearer.
复杂度 O ( w 2 s l o g s + q w s ) , s = ∑ c i O(w^2slogs+qws),s=\sum{ci} O(w2slogs+qws),s=∑ci
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define IOS ios::sync_with_stdio(false),cin.tie(nullptr)
#define _for(i,a,b) for(int i=(a) ;i<=(b) ;i++)
#define _rep(i,a,b) for(int i=(a) ;i>=(b) ;i--)
#define mst(v,s) memset(v,s,sizeof(v))
#define pii pair<int ,int >
#define pb(v) push_back(v)
#define all(v) v.begin(),v.end()
#define int long long
#define inf 0x3f3f3f3f
#define INF 0x7f7f7f7f7f7f7f7f
#define endl "\n"
#define fi first
#define se second
#define ls p<<1
#define rs p<<1|1
#define lson p<<1,l,mid
#define rson p<<1|1,mid+1,r
#define AC return 0
#define ldb long double
const int maxn = 6e6+10;
const int p = 998244353;
const int mod = 998244353;
int Pow(int x,int d){
int tans = 1;
if(d == 0)return 1%p;
int a = Pow(x,d/2);
tans = 1ll*a*a%p;
if(d%2)tans = 1ll*tans*x%p;
return tans%p;
}
typedef vector<int> Poly;//多项式定义
inline Poly operator + (const Poly&A ,const Poly&B){
Poly res (max(A.size(),B.size()),0);
for(int i=0 ;i<max(A.size(),B.size()) ;i++){
if( i < A.size() && i<B.size() ) res[i] = (A[i]+B[i])%mod;
else if( i >= A.size() ){
res[i] = B[i];
}
else res[i] = A[i];
}
return res;
}
inline Poly operator - (const Poly&A ,const Poly&B){
Poly res (max(A.size(),B.size()),0);
for(int i=0 ;i<max(A.size(),B.size()) ;i++){
if( i < A.size() && i<B.size() ) res[i] = (A[i]-B[i]+mod)%mod;
else if( i >= A.size() ){
res[i] = (mod-B[i])%mod;
}
else res[i] = A[i];
}
return res;
}
int F1[maxn],F2[maxn];
int rev[maxn];
void NTT(int * A,int lim,int opt) {
int i, j, k, m, gn, g, tmp;
for(int i = 0; i < lim; ++i)rev[i] = (i & 1)*(lim >> 1) + (rev[i >> 1] >> 1);
for(i = 0; i < lim; ++i)if (rev[i] < i) swap(A[i], A[rev[i]]);
for(m = 2; m <= lim; m <<= 1) {
k = m >> 1;
gn = Pow(3,(p - 1) / m);
for(i = 0; i < lim; i += m) {
g = 1;
for (j = 0; j < k; ++j, g = 1ll * g * gn % p) {
tmp = 1ll * A[i + j + k] * g % p;
A[i + j + k] = (A[i + j] - tmp + p) % p;
A[i + j] = (A[i + j] + tmp) % p;
}
}
}
if(opt == -1){
reverse(A+1,A+lim);
int inv = Pow(lim,p-2);
for(i = 0; i < lim; ++i) A[i] = 1ll * A[i] * inv % p;
}
}
Poly mul(const Poly & A,const Poly & B){
int n = A.size(),m = B.size();
int siz = n + m - 1;
Poly C(siz);
if(siz < 64){
//小于等于64项直接暴力算
for(int i = 0;i < n;i++){
for(int j = 0;j < m;j++)C[i+j] = (C[i+j] + 1LL*A[i]*B[j]%p)%p;
}
return C;
}
int fsiz = 1;
while(fsiz <= siz)fsiz *= 2;
for(int i = 0;i < fsiz;i++)F1[i] = F2[i] = 0;
for(int i = 0;i < n;i++)F1[i] = A[i];
for(int i = 0;i < m;i++)F2[i] = B[i];
NTT(F1,fsiz,1);
NTT(F2,fsiz,1);
for(int i = 0;i < fsiz;i++)F1[i] = 1ll*F1[i]*F2[i]%p;
NTT(F1,fsiz,-1);
for(int i = 0;i < siz;i++){
C[i] = F1[i];
}
return C;
}
const int N = 5e5+10;
const int M = 1e7+5;
int W,n;
int c[11],fac[M],ni_f[M];
int mi[11][M];
Poly f[11][11];
ll qsm(int a,int b){
a %= mod;
ll ans=1,tmp=a;
while( b ){
if( b&1 ) ans = (ans * tmp)%mod;
tmp = tmp * tmp%mod;
b>>=1;
}
return ans;
}
void ini(){
int mx = 1e7;
fac[0]=1;
_for(i,1,mx) fac[i] = fac[i-1]*i%mod;
ni_f[mx] = qsm(fac[mx],mod-2);
_rep(i,mx-1,0) ni_f[i] = ni_f[i+1]*(i+1)%mod;
}
int S;
void ff(Poly F){
F.resize(min(S+1,(int)F.size()));
}
void solve(){
f[1][1].resize(1,1);
f[1][0].resize(c[1]+1,0);
_for(i,0,c[1]-1){
f[1][0][i] = (mod-ni_f[i])%mod;
}
_for(i,2,W){
_for(j,0,i){
Poly t (c[i]+1,0);
_for(k,0,c[i]-1){
t[k] = (mod-ni_f[k])%mod;
}
f[i][0] = mul(f[i-1][0],t);
ff(f[i][0]);
f[i][j] = (f[i-1][j-1] + mul(f[i-1][j],t));
ff(f[i][j]);
}
}
}
int Q(int n){
int ans=0;
for(int i=0 ;i<=W ;i++){
// exp(ix)
int pw = qsm(i,n-min(n,(int)f[W][i].size()-1ll));
for(int j=min(n,(int)f[W][i].size()-1ll) ;j>=0 ;j--){
int t = n-j;
if( j < min(n,(int)f[W][i].size()-1ll) ) pw = pw * i%mod;
ans = (ans + f[W][i][j] * pw %mod*ni_f[t]%mod)%mod;
}
}
return ans*fac[n]%mod;
}
signed main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif
IOS;
cin>>W;
_for(i,1,W) cin>>c[i];
S = accumulate(c+1,c+1+W,0ll);
ini();
solve();
int q;cin>>q;
while( q-- ){
int x;cin>>x;
int ans = Q(x);
cout<<ans<<endl;
}
AC;
}
边栏推荐
猜你喜欢
请写出SparkSQL语句
【学习笔记之菜Dog学C】动态内存管理之经典笔试题
一篇博客通关Redis技术栈
8.04 Day35-----MVC three-tier architecture
二叉树基本性质+oj题解析
Detailed explanation of each module of ansible
How can Flutter parent and child components receive click events
WPF中DataContext作用
Homework 8.4 Interprocess Communication Pipes and Signals
结构光三维重建(二)线结构光三维重建
随机推荐
for..in和for..of的区别
WPF中DataContext作用
多线程查询结果,添加List集合
8.04 Day35-----MVC三层架构
Structured Light 3D Reconstruction (2) Line Structured Light 3D Reconstruction
How to identify false evidence and evidence?
Day14 jenkins部署
[WeChat applet] WXML template syntax - conditional rendering
雷克萨斯lm的安全性到底体现在哪里?一起来看看吧
【无标题】
u-boot debugging and positioning means
uboot enable debug printing information
社区分享|腾讯海外游戏基于JumpServer构建游戏安全运营能力
C语言-大白话理解原码,反码和补码
RL reinforcement learning summary (1)
Algorithms - ones and zeros (Kotlin)
MySQL Foundation (1) - Basic Cognition and Operation
phone call function
Basic properties of binary tree + oj problem analysis
Qt制作18帧丘比特表白意中人、是你的丘比特嘛!!!