当前位置:网站首页>[set theory] order relation (eight special elements in partial order relation | ① maximum element | ② minimum element | ③ maximum element | ④ minimum element | ⑤ upper bound | ⑥ lower bound | ⑦ minimu
[set theory] order relation (eight special elements in partial order relation | ① maximum element | ② minimum element | ③ maximum element | ④ minimum element | ⑤ upper bound | ⑥ lower bound | ⑦ minimu
2022-07-03 09:15:00 【Programmer community】
List of articles
- One 、 The biggest dollar
- Two 、 Minimum element
- 3、 ... and 、 The biggest dollar 、 Minimum element example
- Four 、 Great dollar
- 5、 ... and 、 Minima
- 6、 ... and 、 Great dollar 、 Minimal element example
- 7、 ... and 、 upper bound
- 8、 ... and 、 Lower bound
- Nine 、 upper bound 、 Lower bound example
- Ten 、 Upper bound ( Minimum upper bound )
- 11、 ... and 、 Lower bound ( Maximum lower bound )
- Twelve 、 Upper bound 、 Infimum example
One 、 The biggest dollar
<
A
,
≼
>
<A, \preccurlyeq>
<A,≼> yes Posets ,
B
⊆
A
B \subseteq A
B⊆A ,
y
∈
B
y \in B
y∈B ,
B
B
B All elements in are related to
y
y
y Are comparable ,
B
B
B Any element in
x
x
x , All satisfied with
x
x
x Less than or equal to
y
y
y
Symbolize :
∀
x
(
x
∈
B
→
x
≼
y
)
\forall x ( x \in B \to x \preccurlyeq y )
∀x(x∈B→x≼y)
call
y
y
y yes
B
B
B The largest element of a set ;
Two 、 Minimum element
<
A
,
≼
>
<A, \preccurlyeq>
<A,≼> yes Posets ,
B
⊆
A
B \subseteq A
B⊆A ,
y
∈
B
y \in B
y∈B ,
B
B
B All elements in are related to
y
y
y Are comparable ,
B
B
B Any element in
x
x
x , All satisfied with
y
y
y Less than or equal to
x
x
x
Symbolize :
∀
x
(
x
∈
B
→
y
≼
x
)
\forall x ( x \in B \to y \preccurlyeq x )
∀x(x∈B→y≼x)
call
y
y
y yes
B
B
B The smallest element of a set ;
3、 ... and 、 The biggest dollar 、 Minimum element example
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
9
,
10
,
15
}
A = \{ 1, 2, 3, 4, 5, 6, 9, 10, 15 \}
A={ 1,2,3,4,5,6,9,10,15} ,
aggregate
A
A
A On the division relationship “
∣
|
∣” It's a partial order relationship ,
Poset is
<
A
,
∣
>
<A, |>
<A,∣>
x
x
x to be divisible by
y
y
y ,
x
x
x It's a divisor ( The denominator ) ,
y
y
y It's a dividend ( molecular ) ;
y
x
\dfrac{y}{x}
xy
y
y
y Can be
x
x
x to be divisible by ,
x
x
x It's a divisor ( The denominator ) ,
y
y
y It's a dividend ( molecular ) ;
y
x
\dfrac{y}{x}
xy
Draw the above partially ordered set of hastu :
B
1
=
{
1
,
2
,
3
}
B_1 = \{ 1,2,3 \}
B1={ 1,2,3}
B
2
=
{
3
,
5
,
15
}
B_2 = \{ 3 , 5, 15 \}
B2={ 3,5,15}
B
3
=
A
B_3 = A
B3=A
Find the The biggest dollar , Minimum element ?
B
1
=
{
1
,
2
,
3
}
B_1 = \{ 1,2,3 \}
B1={ 1,2,3}
- The biggest dollar :
2
,
3
2, 3
2,3 Not comparable to each other , There is no maximum yuan ;
- Minimum element :
1
1
1 It is comparable with other elements , Are less than or equal to other elements ,
1
1
1 It's the smallest element ;
B
2
=
{
3
,
5
,
15
}
B_2 = \{ 3 , 5, 15 \}
B2={ 3,5,15}
- The biggest dollar :
15
15
15 It is comparable with other elements , Are greater than or equal to other elements ,
15
15
15 Is the largest yuan ;
- Minimum element :
3
,
5
3, 5
3,5 Not comparable to each other , There is no minimum element ;
B
3
=
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
9
,
10
,
15
}
B_3 = A = \{ 1, 2, 3, 4, 5, 6, 9, 10, 15 \}
B3=A={ 1,2,3,4,5,6,9,10,15}
- The biggest dollar :
9
,
4
,
6
,
15
,
10
9,4,6,15,10
9,4,6,15,10 Not comparable to each other , There is no maximum yuan ;
- Minimum element :
1
1
1 It is comparable with other elements , Are less than or equal to other elements ,
1
1
1 It's the smallest element ;
Four 、 Great dollar
<
A
,
≼
>
<A, \preccurlyeq>
<A,≼> yes Posets ,
B
⊆
A
B \subseteq A
B⊆A ,
y
∈
B
y \in B
y∈B ,
stay
B
B
B There is no better than
y
y
y The bigger element ,
Symbolize :
∀
x
(
x
∈
B
∧
y
≼
x
→
x
=
y
)
\forall x ( x \in B \land y \preccurlyeq x \to x = y )
∀x(x∈B∧y≼x→x=y)
call
y
y
y yes
B
B
B A collection of Great dollar ;
5、 ... and 、 Minima
<
A
,
≼
>
<A, \preccurlyeq>
<A,≼> yes Posets ,
B
⊆
A
B \subseteq A
B⊆A ,
y
∈
B
y \in B
y∈B ,
stay
B
B
B There is no better than
y
y
y Smaller elements ,
Symbolize :
∀
x
(
x
∈
B
∧
x
≼
y
→
x
=
y
)
\forall x ( x \in B \land x \preccurlyeq y \to x = y )
∀x(x∈B∧x≼y→x=y)
call
y
y
y yes
B
B
B A collection of Minima ;
6、 ... and 、 Great dollar 、 Minimal element example
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
9
,
10
,
15
}
A = \{ 1, 2, 3, 4, 5, 6, 9, 10, 15 \}
A={ 1,2,3,4,5,6,9,10,15} ,
aggregate
A
A
A On the division relationship “
∣
|
∣” It's a partial order relationship ,
Poset is
<
A
,
∣
>
<A, |>
<A,∣>
x
x
x to be divisible by
y
y
y ,
x
x
x It's a divisor ( The denominator ) ,
y
y
y It's a dividend ( molecular ) ;
y
x
\dfrac{y}{x}
xy
y
y
y Can be
x
x
x to be divisible by ,
x
x
x It's a divisor ( The denominator ) ,
y
y
y It's a dividend ( molecular ) ;
y
x
\dfrac{y}{x}
xy
Draw the above partially ordered set of hastu :
B
1
=
{
1
,
2
,
3
}
B_1 = \{ 1,2,3 \}
B1={ 1,2,3}
B
2
=
{
3
,
5
,
15
}
B_2 = \{ 3 , 5, 15 \}
B2={ 3,5,15}
B
3
=
A
B_3 = A
B3=A
Find the Great dollar , Minima ?
B
1
=
{
1
,
2
,
3
}
B_1 = \{ 1,2,3 \}
B1={ 1,2,3}
- Great dollar :
2
,
3
2, 3
2,3 Not comparable to each other , There's nothing like
2
,
3
2,3
2,3 The bigger element ,
2
,
3
2,3
2,3 It's a huge yuan ;
- Minima :
1
1
1 It is comparable with other elements , Are less than or equal to other elements , There's nothing like
1
1
1 Smaller elements ,
1
1
1 Is a minimal element ;
B
2
=
{
3
,
5
,
15
}
B_2 = \{ 3 , 5, 15 \}
B2={ 3,5,15}
- Great dollar :
15
15
15 It is comparable with other elements , Are greater than or equal to other elements , There's nothing like
15
15
15 The bigger element ,
15
15
15 yes Great dollar ;
- Minimum element :
3
,
5
3, 5
3,5 Not comparable to each other , There's nothing like
3
,
5
3,5
3,5 Smaller elements ,
3
,
5
3,5
3,5 Is a minimal element ;
B
3
=
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
9
,
10
,
15
}
B_3 = A = \{ 1, 2, 3, 4, 5, 6, 9, 10, 15 \}
B3=A={ 1,2,3,4,5,6,9,10,15}
- Great dollar :
9
,
4
,
6
,
15
,
10
9,4,6,15,10
9,4,6,15,10 Not comparable to each other , There's nothing like
9
,
4
,
6
,
15
,
10
9,4,6,15,10
9,4,6,15,10 The bigger element ,
9
,
4
,
6
,
15
,
10
9,4,6,15,10
9,4,6,15,10 It's a huge yuan ;
- Minima :
1
1
1 It is comparable with other elements , Are less than or equal to other elements , There's nothing like
1
1
1 Smaller elements ,
1
1
1 Is a minimal element ;
7、 ... and 、 upper bound
<
A
,
≼
>
<A, \preccurlyeq>
<A,≼> yes Posets ,
B
⊆
A
B \subseteq A
B⊆A ,
y
∈
A
y \in A
y∈A
y
y
y Than
B
B
B All elements in should be big
Symbolize :
∀
x
(
x
∈
B
→
x
≼
y
)
\forall x ( x \in B \to x \preccurlyeq y )
∀x(x∈B→x≼y)
call
y
y
y yes
B
B
B A collection of upper bound ;
8、 ... and 、 Lower bound
<
A
,
≼
>
<A, \preccurlyeq>
<A,≼> yes Posets ,
B
⊆
A
B \subseteq A
B⊆A ,
y
∈
A
y \in A
y∈A
y
y
y Than
B
B
B All elements in should be small
Symbolize :
∀
x
(
x
∈
B
→
y
≼
x
)
\forall x ( x \in B \to y \preccurlyeq x )
∀x(x∈B→y≼x)
call
y
y
y yes
B
B
B A collection of Lower bound ;
Nine 、 upper bound 、 Lower bound example
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
9
,
10
,
15
}
A = \{ 1, 2, 3, 4, 5, 6, 9, 10, 15 \}
A={ 1,2,3,4,5,6,9,10,15} ,
aggregate
A
A
A On the division relationship “
∣
|
∣” It's a partial order relationship ,
Poset is
<
A
,
∣
>
<A, |>
<A,∣>
x
x
x to be divisible by
y
y
y ,
x
x
x It's a divisor ( The denominator ) ,
y
y
y It's a dividend ( molecular ) ;
y
x
\dfrac{y}{x}
xy
y
y
y Can be
x
x
x to be divisible by ,
x
x
x It's a divisor ( The denominator ) ,
y
y
y It's a dividend ( molecular ) ;
y
x
\dfrac{y}{x}
xy
Draw the above partially ordered set of hastu :
B
1
=
{
1
,
2
,
3
}
B_1 = \{ 1,2,3 \}
B1={ 1,2,3}
B
2
=
{
3
,
5
,
15
}
B_2 = \{ 3 , 5, 15 \}
B2={ 3,5,15}
B
3
=
A
B_3 = A
B3=A
Find the upper bound , Lower bound ?
B
1
=
{
1
,
2
,
3
}
B_1 = \{ 1,2,3 \}
B1={ 1,2,3}
- upper bound :
6
6
6 And
1
,
2
,
3
1, 2, 3
1,2,3 Comparable ,
6
6
6 Than
B
1
B_1
B1 All elements in the are big ,
6
6
6 It's the upper bound ;
- Lower bound :
1
1
1 And
1
,
2
,
3
1, 2, 3
1,2,3 Comparable ,
1
1
1 Than
B
1
B_1
B1 All elements in are small ,
1
1
1 It's the lower boundary ;
B
2
=
{
3
,
5
,
15
}
B_2 = \{ 3 , 5, 15 \}
B2={ 3,5,15}
- upper bound :
15
15
15 And
3
,
5
,
15
3 , 5, 15
3,5,15 Comparable ,
15
15
15 Than
B
2
B_2
B2 All elements in the are big ,
15
15
15 It's the upper bound ;
- Lower bound :
1
1
1 And
3
,
5
,
15
3 , 5, 15
3,5,15 Comparable ,
1
1
1 Than
B
2
B_2
B2 All elements in are small ,
1
1
1 It's the lower boundary ;
B
3
=
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
9
,
10
,
15
}
B_3 = A = \{ 1, 2, 3, 4, 5, 6, 9, 10, 15 \}
B3=A={ 1,2,3,4,5,6,9,10,15}
- upper bound : There are no elements and
B
3
B_3
B3 The elements in are comparable ; There is no upper bound ;
- Lower bound :
1
1
1 And
B
3
B_3
B3 The elements in are comparable ,
1
1
1 Than
B
3
B_3
B3 All elements in are small ,
1
1
1 It's the lower boundary ;
Ten 、 Upper bound ( Minimum upper bound )
<
A
,
≼
>
<A, \preccurlyeq>
<A,≼> yes Posets ,
B
⊆
A
B \subseteq A
B⊆A ,
y
∈
A
y \in A
y∈A
The smallest element in the upper bound is Minimum upper bound , Also known as supremum
11、 ... and 、 Lower bound ( Maximum lower bound )
<
A
,
≼
>
<A, \preccurlyeq>
<A,≼> yes Posets ,
B
⊆
A
B \subseteq A
B⊆A ,
y
∈
A
y \in A
y∈A
The biggest element in the lower bound is Maximum lower bound , Also known as infimum
Twelve 、 Upper bound 、 Infimum example
aggregate
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
9
,
10
,
15
}
A = \{ 1, 2, 3, 4, 5, 6, 9, 10, 15 \}
A={ 1,2,3,4,5,6,9,10,15} ,
aggregate
A
A
A On the division relationship “
∣
|
∣” It's a partial order relationship ,
Poset is
<
A
,
∣
>
<A, |>
<A,∣>
x
x
x to be divisible by
y
y
y ,
x
x
x It's a divisor ( The denominator ) ,
y
y
y It's a dividend ( molecular ) ;
y
x
\dfrac{y}{x}
xy
y
y
y Can be
x
x
x to be divisible by ,
x
x
x It's a divisor ( The denominator ) ,
y
y
y It's a dividend ( molecular ) ;
y
x
\dfrac{y}{x}
xy
Draw the above partially ordered set of hastu :
B
1
=
{
1
,
2
,
3
}
B_1 = \{ 1,2,3 \}
B1={ 1,2,3}
B
2
=
{
3
,
5
,
15
}
B_2 = \{ 3 , 5, 15 \}
B2={ 3,5,15}
B
3
=
A
B_3 = A
B3=A
Find the Upper bound ( Minimum upper bound ) , Lower bound ( Maximum lower bound ) ?
B
1
=
{
1
,
2
,
3
}
B_1 = \{ 1,2,3 \}
B1={ 1,2,3}
- Upper bound :
6
6
6 And
1
,
2
,
3
1, 2, 3
1,2,3 Comparable ,
6
6
6 Than
B
1
B_1
B1 All elements in the are big ,
6
6
6 It's the upper bound ;
6
6
6 It is also the supremum , Minimum upper bound ;
- Lower bound :
1
1
1 And
1
,
2
,
3
1, 2, 3
1,2,3 Comparable ,
1
1
1 Than
B
1
B_1
B1 All elements in are small ,
1
1
1 It's the lower boundary ;
1
1
1 It is also the infimum , Maximum lower bound ;
B
2
=
{
3
,
5
,
15
}
B_2 = \{ 3 , 5, 15 \}
B2={ 3,5,15}
- Upper bound :
15
15
15 And
3
,
5
,
15
3 , 5, 15
3,5,15 Comparable ,
15
15
15 Than
B
2
B_2
B2 All elements in the are big ,
15
15
15 It's the upper bound ;
15
15
15 It is also the supremum , Minimum upper bound ;
- Lower bound :
1
1
1 And
3
,
5
,
15
3 , 5, 15
3,5,15 Comparable ,
1
1
1 Than
B
2
B_2
B2 All elements in are small ,
1
1
1 It's the lower boundary ;
1
1
1 It is also the infimum , Maximum lower bound ;
B
3
=
A
=
{
1
,
2
,
3
,
4
,
5
,
6
,
9
,
10
,
15
}
B_3 = A = \{ 1, 2, 3, 4, 5, 6, 9, 10, 15 \}
B3=A={ 1,2,3,4,5,6,9,10,15}
- Upper bound : There are no elements and
B
3
B_3
B3 The elements in are comparable ; There is no upper bound ; non-existent Upper bound / Minimum upper bound ;
- Lower bound :
1
1
1 And
B
3
B_3
B3 The elements in are comparable ,
1
1
1 Than
B
3
B_3
B3 All elements in are small ,
1
1
1 It's the lower boundary ;
1
1
1 It is also the infimum , Maximum lower bound ;
边栏推荐
- 浅谈企业信息化建设
- 2022-2-13 learning the imitation Niuke project - home page of the development community
- AcWing 787. Merge sort (template)
- 【点云处理之论文狂读经典版10】—— PointCNN: Convolution On X-Transformed Points
- 【Kotlin学习】运算符重载及其他约定——重载算术运算符、比较运算符、集合与区间的约定
- 推荐一个 yyds 的低代码开源项目
- LeetCode 1089. Duplicate zero
- [point cloud processing paper crazy reading classic version 13] - adaptive graph revolutionary neural networks
- LeetCode 324. 摆动排序 II
- Simple use of MATLAB
猜你喜欢
[point cloud processing paper crazy reading classic version 9] - pointwise revolutionary neural networks
[point cloud processing paper crazy reading classic version 7] - dynamic edge conditioned filters in revolutionary neural networks on Graphs
[point cloud processing paper crazy reading frontier version 10] - mvtn: multi view transformation network for 3D shape recognition
【点云处理之论文狂读前沿版9】—Advanced Feature Learning on Point Clouds using Multi-resolution Features and Learni
【点云处理之论文狂读前沿版10】—— MVTN: Multi-View Transformation Network for 3D Shape Recognition
Data mining 2021-4-27 class notes
Low code momentum, this information management system development artifact, you deserve it!
Discussion on enterprise informatization construction
【点云处理之论文狂读前沿版13】—— GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature
[point cloud processing paper crazy reading classic version 11] - mining point cloud local structures by kernel correlation and graph pooling
随机推荐
Character pyramid
[point cloud processing paper crazy reading frontier version 10] - mvtn: multi view transformation network for 3D shape recognition
Tree DP acwing 285 A dance without a boss
2022-2-14 learning xiangniuke project - Session Management
LeetCode 535. Encryption and decryption of tinyurl
Problems in the implementation of lenet
Six dimensional space (C language)
Data mining 2021-4-27 class notes
状态压缩DP AcWing 91. 最短Hamilton路径
LeetCode 513. 找树左下角的值
What are the stages of traditional enterprise digital transformation?
String splicing method in shell
Debug debugging - Visual Studio 2022
Methods of using arrays as function parameters in shell
Internet Protocol learning record
Linxu learning (4) -- Yum and apt commands
【点云处理之论文狂读经典版11】—— Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling
【点云处理之论文狂读前沿版12】—— Adaptive Graph Convolution for Point Cloud Analysis
LeetCode 75. 颜色分类
C language file reading and writing