当前位置:网站首页>MNIST handwritten digit recognition, sorted by from two to ten

MNIST handwritten digit recognition, sorted by from two to ten

2022-08-04 06:19:00 Learning Adventures

A method for converting a binary classification model into a multiclass classification model

A deep learning framework is used in this caseMindSpore,Take advantage of its friendly wrapper modules,模型结构定义、损失函数定义、Gradient descent implementation and other processes,Just a simple function call,model training can be achieved,Greatly improve the efficiency of model development.

1.加载数据集

        加载完整的、A dataset of ten categories 

import os
import numpy as np

import moxing as mox
import mindspore.dataset as ds

datasets_dir = '../datasets'
if not os.path.exists(datasets_dir):
    os.makedirs(datasets_dir)
    
if not os.path.exists(os.path.join(datasets_dir, 'MNIST_Data.zip')):
    mox.file.copy('obs://modelarts-labs-bj4-v2/course/hwc_edu/python_module_framework/datasets/mindspore_data/MNIST_Data.zip', 
                  os.path.join(datasets_dir, 'MNIST_Data.zip'))
    os.system('cd %s; unzip MNIST_Data.zip' % (datasets_dir))
    
# Read full training samples and test samples
mnist_ds_train = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/train"))
mnist_ds_test = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/test"))
train_len = mnist_ds_train.get_dataset_size()
test_len = mnist_ds_test.get_dataset_size()
print('training set size:', train_len, ',测试集规模:', test_len)

training set size:60000,测试集规模:10000 

        查看10个样本

from PIL import Image
items_train = mnist_ds_train.create_dict_iterator(output_numpy=True)

train_data = np.array([i for i in items_train])
images_train = np.array([i["image"] for i in train_data])
labels_train = np.array([i["label"] for i in train_data])

batch_size = 10  # 查看10个样本
batch_label = [lab for lab in labels_train[:10]]
print(batch_label)
batch_img = images_train[0].reshape(28, 28)
for i in range(1, batch_size):
    batch_img = np.hstack((batch_img, images_train[i].reshape(28, 28)))  # 将一批图片水平拼接起来,方便下一步进行显示
Image.fromarray(batch_img)
[0, 2, 2, 7, 8, 4, 9, 1, 8, 8]

 2.处理数据集

        The dataset is very important for training,好的数据集可以有效提高训练精度和效率,before using the dataset,通常会对数据集进行一些处理.

进行数据增强操作

import mindspore.dataset.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype

num_parallel_workers = 1
resize_height, resize_width = 28, 28

# according to the parameters, generate the corresponding data enhancement method
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)  # Scales image data pixels
type_cast_op = C.TypeCast(mstype.int32)  # 将数据类型转化为int32.
hwc2chw_op = CV.HWC2CHW()  # Transform the image data tensor,Tensor form by highx宽x通道(HWC)become a channelx高x宽(CHW),It is convenient for data training.

# using map to apply operations to a dataset
mnist_ds_train = mnist_ds_train.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds_train = mnist_ds_train.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds_train = mnist_ds_train.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers)

buffer_size = 10000
mnist_ds_train = mnist_ds_train.shuffle(buffer_size=buffer_size)  # Shuffle the order of the training set

进行数据归一化

        Normalize the image data、归一化操作,Makes the numerical size of each pixel in (0,1)范围中,Can improve training efficiency.

rescale = 1.0 / 255.0
shift = 0.0

rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081

rescale_op = CV.Rescale(rescale, shift) 
mnist_ds_train = mnist_ds_train.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)

rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
mnist_ds_train = mnist_ds_train.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)

mnist_ds_train = mnist_ds_train.batch(60000, drop_remainder=True)  # Batch the dataset,Load the full training set here

3. 封装成函数

        到此,We have completed the preparation of training data,The above operations can be encapsulated as load_data_all函数和process_dataset函数,to be used again later.

Define data processing operations

定义一个函数process_datasetto perform data augmentation and processing operations:

  • Define some parameters required for data augmentation and processing.

  • 根据参数,Generate corresponding data augmentation operations.

  • 使用map映射函数,将数据操作应用到数据集.

  • Process the resulting dataset. 

%%writefile ../datasets/MNIST_Data/process_dataset.py
def process_dataset(mnist_ds, batch_size=32, resize= 28, repeat_size=1,
                   num_parallel_workers=1):
    """
    process_dataset for train or test

    Args:
        mnist_ds (str): MnistData path
        batch_size (int): The number of data records in each group
        resize (int): Scale image data pixels
        repeat_size (int): The number of replicated data records
        num_parallel_workers (int): The number of parallel workers
    """

    import mindspore.dataset.vision.c_transforms as CV
    import mindspore.dataset.transforms.c_transforms as C
    from mindspore.dataset.vision import Inter
    from mindspore import dtype as mstype
    
    # define some parameters needed for data enhancement and rough justification
    resize_height, resize_width = resize, resize
    rescale = 1.0 / 255.0
    shift = 0.0
    rescale_nml = 1 / 0.3081
    shift_nml = -1 * 0.1307 / 0.3081

    # according to the parameters, generate the corresponding data enhancement method
    resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
    rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
    rescale_op = CV.Rescale(rescale, shift)
    hwc2chw_op = CV.HWC2CHW()
    type_cast_op = C.TypeCast(mstype.int32)
    c_trans = [resize_op, rescale_op, rescale_nml_op, hwc2chw_op]

    # using map to apply operations to a dataset
    mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(operations=c_trans, input_columns="image", num_parallel_workers=num_parallel_workers)

    # process the generated dataset
    buffer_size = 10000
    mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
    mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
    mnist_ds = mnist_ds.repeat(repeat_size)

    return mnist_ds

定义数据加载函数 

%%writefile ../datasets/MNIST_Data/load_data_all.py
def load_data_all(datasets_dir):
    import os
    if not os.path.exists(datasets_dir):
        os.makedirs(datasets_dir)
    import moxing as mox
    if not os.path.exists(os.path.join(datasets_dir, 'MNIST_Data.zip')):
        mox.file.copy('obs://modelarts-labs-bj4-v2/course/hwc_edu/python_module_framework/datasets/mindspore_data/MNIST_Data.zip', 
                      os.path.join(datasets_dir, 'MNIST_Data.zip'))
        os.system('cd %s; unzip MNIST_Data.zip' % (datasets_dir))
    
    # Read full training samples and test samples
    import mindspore.dataset as ds
    datasets_dir = '../datasets'
    mnist_ds_train = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/train"))
    mnist_ds_test = ds.MnistDataset(os.path.join(datasets_dir, "MNIST_Data/test"))
    train_len = mnist_ds_train.get_dataset_size()
    test_len = mnist_ds_test.get_dataset_size()
    print('training set size:', train_len, ',测试集规模:', test_len)
    
    return mnist_ds_train, mnist_ds_test, train_len, test_len

4.Load the processed test set

import os, sys 
sys.path.insert(0, os.path.join(os.getcwd(), '../datasets/MNIST_Data'))
from process_dataset import process_dataset
mnist_ds_test = process_dataset(mnist_ds_test, batch_size= 10000)

5.Define the network structure and evaluation function 

import mindspore
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Normal

class Network(nn.Cell):
    def __init__(self, num_of_weights):
        super(Network, self).__init__()
        self.fc = nn.Dense(in_channels=num_of_weights, out_channels=10, weight_init=Normal(0.02))  # 定义一个全连接层
        self.nonlinearity = nn.Sigmoid()
        self.flatten = nn.Flatten()
    
    def construct(self, x):  # The weighted summation unit and the nonlinear function unit are implemented by defining the calculation process
        x = self.flatten(x)
        z = self.fc(x)
        pred_y = self.nonlinearity(z)
        return pred_y
    
def evaluate(pred_y, true_y): 
    pred_labels = ops.Argmax(output_type=mindspore.int32)(pred_y)
    correct_num = (pred_labels == true_y).asnumpy().sum().item()
    return correct_num

6.定义交叉熵损失函数和优化器

# 损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')

# 创建网络
network = Network(28*28)  
lr = 0.01
momentum = 0.9

# 优化器
net_opt = nn.Momentum(network.trainable_params(), lr, momentum)

7.实现训练函数 

def train(network, mnist_ds_train, max_epochs= 50):
    net = WithLossCell(network, net_loss)
    net = TrainOneStepCell(net, net_opt)
    network.set_train()
    for epoch in range(1, max_epochs + 1):
        train_correct_num = 0.0
        test_correct_num = 0.0
        for inputs_train in mnist_ds_train:
            output = net(*inputs_train)
            train_x = inputs_train[0]
            train_y = inputs_train[1]
            pred_y_train = network.construct(train_x)  # 前向传播
            train_correct_num += evaluate(pred_y_train, train_y)
        train_acc = float(train_correct_num) / train_len
        
        for inputs_test in mnist_ds_test:
            test_x = inputs_test[0]
            test_y = inputs_test[1]
            pred_y_test = network.construct(test_x)
            test_correct_num += evaluate(pred_y_test, test_y)
        test_acc = float(test_correct_num) / test_len
        if (epoch == 1) or (epoch % 10 == 0):
            print("epoch: {0}/{1}, train_losses: {2:.4f}, tain_acc: {3:.4f}, test_acc: {4:.4f}" \
                  .format(epoch, max_epochs, output.asnumpy(), train_acc, test_acc, cflush=True))

8. 配置运行信息

        在正式训练前,通过context.set_context来配置运行需要的信息,譬如运行模式、后端信息、硬件等信息.        

from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")  # device_target 可选 CPU/GPU, 当选择GPU时mindspore规格也需要切换到GPU

 9.开始训练

import time
from mindspore.nn import WithLossCell, TrainOneStepCell

max_epochs = 100
start_time = time.time()
print("*"*10 + "开始训练" + "*"*10)
train(network, mnist_ds_train, max_epochs= max_epochs)
print("*"*10 + "训练完成" + "*"*10)
cost_time = round(time.time() - start_time, 1)
print("训练总耗时: %.1f s" % cost_time)
**********开始训练**********

epoch: 1/100, train_losses: 2.2832, tain_acc: 0.1698, test_acc: 0.1626

epoch: 10/100, train_losses: 2.0465, tain_acc: 0.6343, test_acc: 0.6017

epoch: 20/100, train_losses: 1.8368, tain_acc: 0.7918, test_acc: 0.7812

epoch: 30/100, train_losses: 1.7602, tain_acc: 0.8138, test_acc: 0.8017

epoch: 40/100, train_losses: 1.7245, tain_acc: 0.8238, test_acc: 0.7972

epoch: 50/100, train_losses: 1.7051, tain_acc: 0.8337, test_acc: 0.8044

epoch: 60/100, train_losses: 1.6922, tain_acc: 0.8403, test_acc: 0.8047

epoch: 70/100, train_losses: 1.6827, tain_acc: 0.8454, test_acc: 0.8033

epoch: 80/100, train_losses: 1.6752, tain_acc: 0.8501, test_acc: 0.8051

epoch: 90/100, train_losses: 1.6689, tain_acc: 0.8536, test_acc: 0.8049

epoch: 100/100, train_losses: 1.6635, tain_acc: 0.8569, test_acc: 0.8037

**********训练完成**********

训练总耗时: 430.7 s

到目前为止,Code based on handwritten digit binary classification with minor modifications,It quickly realizes the ten categories of handwritten digit recognition.

The modification process is very simple,But as you can see from the above results,该模型训练100个epoch,It is only achieved on the task of handwritten digit recognition very class80%的准确率,On the binary classification task in the previous section,模型训练50个epoch达到了99%的准确率,The explanation is on a model as simple as a perceptron,Handwritten digit recognition is more difficult than binary classification.

原网站

版权声明
本文为[Learning Adventures]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208040525570826.html