当前位置:网站首页>省市区三级坐标边界数据csv转JSON
省市区三级坐标边界数据csv转JSON
2022-07-06 17:07:00 【卖香油的少掌柜】
有时候我们绘制如下地图时,要框出某一个城市,或者县城的区域:

这时在编码绘图时,我们需要相应型行政区的json格式的边界坐标集合。
我的上一篇文章写了, 使用python,利用request工具,从高德地图公开API获取中国各个行政区域边界经纬度坐标集。
批量获取中国所有行政区域经边界纬度坐标(到县区级别)_卖香油的少掌柜的博客-CSDN博客本文使用python,利用request工具,从高德地图公开API获取中国各个行政区域边界经纬度坐标集。行政区最细分到县和区的级别。https://blog.csdn.net/qq_58832911/article/details/125617715但是有些同一级同名的地区,会使用相同的边界。这是一个小bug。
本文是,使用了公开坐标数据集转换Json格式,实现获取json格式的边界坐标集合。
csv数据源是可以免费获取的:

你也可以下载我的网盘:
链接:https://pan.baidu.com/s/1AU7sFHoBQBtWT3lMBZAZHg
提取码:ucv9
csv数据的样子:
目的:转化为这个格式的json格式

import pandas as pd
import json
import re
# 读 ok_geo.csv csv文件
def read_csv(file_name):
df = pd.read_csv(file_name, encoding='utf-8')
# 创建国家字典
country_dict = {"name": "China", "border": None, "area": []}
# 实验用的n控制循环次数
n = 0
for index, row in df.iterrows():
# 判断是否是一级地址
if row["deep"] == 0:
# 创建省字典
province_dict = {"name": None, "center": None, "border": None, "area": []}
# 赋值省份字典
province_dict["name"] = row["name"]
# 获取省份坐标中心
province_dict["center"] = [float(i) for i in row["geo"].split(" ")]
# print(province_dict["center"])
province_border = row["polygon"]
# 按","分割,再按照空格分割,转换浮点类型
province_border = [[float(i) for i in re.split(" |;", j)] for j in province_border.split(",")]
province_dict["border"] = province_border
# 将省份字典添加到国家字典的area中
country_dict["area"].append(province_dict)
elif row["deep"] == 1:
# 创建市字典
city_dict = {"name": None, "center": None, "border": None, "countyArea": []}
# 赋值市字典
city_dict["name"] = row["name"]
try:
# 获取市坐标中心
city_dict["center"] = [float(i) for i in row["geo"].split(" ")]
except:
city_dict["center"] = None
# 获取市边界
try:
city_border = row["polygon"]
# 按","分割,再按照空格分割,转换浮点类型
city_border = [[float(i) for i in re.split(' |;', j)] for j in city_border.split(",")]
except:
city_border = None
city_dict["border"] = city_border
# 判断属于哪个省
belong_to_p = row["ext_path"].split(" ")[0]
# print(belong_to_p)
# 查找国家字典中省份列表中的省份字典那个name属性值与belong_to_p相同的那个省份字典所在列表的索引
for i, x in enumerate(country_dict["area"]):
if x["name"] == belong_to_p:
# 将市字典添加到省份字典的area中
p_index = i
break
# print(p_index)
country_dict["area"][p_index]["area"].append(city_dict)
else:
# 创建县区字典
district_dict = {"name": None, "center": None, "border": None}
# 赋值县区字典
district_dict["name"] = row["name"]
# 获取县坐标中心
try:
district_dict["center"] = [float(i) for i in row["geo"].split(" ")]
except:
district_dict["center"] = []
# 获取边界坐标
try:
district_border = row["polygon"]
# 按","分割,再按照空格分割,转换浮点类型
district_border = [[float(i) for i in re.split(' |;', j)] for j in district_border.split(",")]
except:
district_border = []
district_dict["border"] = district_border
# 判断属于哪个省
belong_to_p, belong_to_c= row["ext_path"].split(" ")[0], row["ext_path"].split(" ")[1]
# print(belong_to_p)
# 查找国家字典中省份列表中的省份字典那个name属性值与belong_to_p相同的那个省份字典所在列表的索引
for i, x in enumerate(country_dict["area"]):
if x["name"] == belong_to_p:
# 将县区字典添加到市字典的countyArea中
p_index = i
break
# print(p_index)
# 判断属于那个市
for i, x in enumerate(country_dict["area"][p_index]["area"]):
if x["name"] == belong_to_c:
c_index = i
break
# print(c_index)
country_dict["area"][p_index]["area"][c_index]["countyArea"].append(district_dict)
# print(country_dict)
print("正在进行第" + str(n) + "次循环," + "处理的地址为:" + row["ext_path"])
n += 1
if n==3:
break
# print(country_dict)
# 写入json文件
with open('demo.json', 'w', encoding='utf-8') as f:
json.dump(country_dict, f, ensure_ascii=False)
if __name__ == "__main__":
read_csv('ok_geo.csv')
pass结果:

json文件的下载地址。(不过也希望你可以自己跑代码试一试)
链接:https://pan.baidu.com/s/13RDBSmI0RSQHXllRr3Ke3Q
提取码:homc
仅供交流探讨。不用于商业目的。
边栏推荐
- Deep learning environment configuration jupyter notebook
- Jenkins' user credentials plug-in installation
- 详解OpenCV的矩阵规范化函数normalize()【范围化矩阵的范数或值范围(归一化处理)】,并附NORM_MINMAX情况下的示例代码
- 三维扫描体数据的VTK体绘制程序设计
- Advanced learning of MySQL -- basics -- multi table query -- inner join
- threejs图片变形放大全屏动画js特效
- Stm32f407 ------- DAC digital to analog conversion
- C Primer Plus Chapter 14 (structure and other data forms)
- Leetcode (547) - number of provinces
- Configuring OSPF basic functions for Huawei devices
猜你喜欢

The programmer resigned and was sentenced to 10 months for deleting the code. Jingdong came home and said that it took 30000 to restore the database. Netizen: This is really a revenge

Attention SLAM:一种从人类注意中学习的视觉单目SLAM

Amazon MemoryDB for Redis 和 Amazon ElastiCache for Redis 的内存优化

用tkinter做一个简单图形界面

equals()与hashCode()

37頁數字鄉村振興智慧農業整體規劃建設方案

C9 colleges and universities, doctoral students make a statement of nature!

uniapp中redirectTo和navigateTo的区别

Telerik UI 2022 R2 SP1 Retail-Not Crack

Trace tool for MySQL further implementation plan
随机推荐
以机房B级建设标准满足等保2.0三级要求 | 混合云基础设施
Leetcode(547)——省份数量
【批處理DOS-CMD命令-匯總和小結】-字符串搜索、查找、篩選命令(find、findstr),Find和findstr的區別和辨析
AI super clear repair resurfaces the light in Huang Jiaju's eyes, Lecun boss's "deep learning" course survival report, beautiful paintings only need one line of code, AI's latest paper | showmeai info
【JokerのZYNQ7020】AXI_ EMC。
ActiveReportsJS 3.1中文版|||ActiveReportsJS 3.1英文版
OSPF configuration command of Huawei equipment
pyflink的安装和测试
智能运维应用之道,告别企业数字化转型危机
New feature of Oracle 19C: automatic DML redirection of ADG, enhanced read-write separation -- ADG_ REDIRECT_ DML
48 page digital government smart government all in one solution
How to get started and improve test development?
JWT signature does not match locally computed signature. JWT validity cannot be asserted and should
MySQL learning notes (mind map)
Js+svg love diffusion animation JS special effects
37頁數字鄉村振興智慧農業整體規劃建設方案
新手如何入门学习PostgreSQL?
Markov decision process
Lombok 同时使⽤ @Data 和 @Builder 的坑,你中招没?
深度学习之环境配置 jupyter notebook
https://xiangyuecn.gitee.io/areacity-jsspider-statsgov/