当前位置:网站首页>Pedestrian re identification (Reid) - data set description market-1501
Pedestrian re identification (Reid) - data set description market-1501
2022-07-06 15:08:00 【gmHappy】
Data set profile
Market-1501 The data set was collected on the campus of Tsinghua University , Shooting in summer , stay 2015 Built and published in . It consists of 6 A camera ( among 5 HD cameras and 1 A low-definition camera ) It was filmed 1501 A pedestrian 、32668 Pedestrian rectangle detected . Each pedestrian shall be at least 2 Cameras captured , And there may be multiple images in one camera . The training set has 751 people , contain 12,936 Zhang image , On average, everyone has 17.2 Training data ; The test set has 750 people , contain 19,732 Zhang image , On average, everyone has 26.3 Test data .3368 The pedestrian detection rectangle of the query image is drawn manually , and gallery The pedestrian detection rectangle in the uses DPM Detected by the detector . The data set provides a fixed number of training sets and test sets, which can be used in single-shot or multi-shot Use... Under test settings .
Directory structure
Market-1501
├── bounding_box_test
├── 0000_c1s1_000151_01.jpg
├── 0000_c1s1_000376_03.jpg
├── 0000_c1s1_001051_02.jpg
├── bounding_box_train
├── 0002_c1s1_000451_03.jpg
├── 0002_c1s1_000551_01.jpg
├── 0002_c1s1_000801_01.jpg
├── gt_bbox
├── 0001_c1s1_001051_00.jpg
├── 0001_c1s1_009376_00.jpg
├── 0001_c2s1_001976_00.jpg
├── gt_query
├── 0001_c1s1_001051_00_good.mat
├── 0001_c1s1_001051_00_junk.mat
├── query
├── 0001_c1s1_001051_00.jpg
├── 0001_c2s1_000301_00.jpg
├── 0001_c3s1_000551_00.jpg
└── readme.txt
catalogue
1) “bounding_box_test”—— For the test set 750 people , contain 19,732 Zhang image , The prefix for 0000 It means extracting this 750 In the process of human being DPM Detect the wrong diagram ( Possible and query It's the same person ),-1 A diagram showing other people detected ( Not here 750 people )
2) “bounding_box_train”—— For training sets 751 people , contain 12,936 Zhang image
3) “query”—— by 750 People randomly select an image from each camera as query, So a person's query At most 6 individual , share 3,368 Zhang image
4) “gt_query”——matlab Format , Used to judge a query Which pictures are good matches ( Images from different cameras of the same person ) And a bad match ( An image of the same person, the same camera or an image of a different person )
5) “gt_bbox”—— Hand marked bounding box, Used to judge DPM Tested bounding box Is it a good box
Naming rules
With 0001_c1s1_000151_01.jpg For example
1) 0001 Indicates the tag number of each person , from 0001 To 1501;
2) c1 Indicates the first camera (camera1), share 6 A camera ;
3) s1 Represents the first video clip (sequece1), Each camera has several video clips ;
4) 000151 Express c1s1 Of the 000151 Frame picture , Video frame rate 25fps;
5) 01 Express c1s1_001051 The... On this frame 1 A detection box , As a result of DPM detector , For pedestrians on each frame, several... May be framed bbox.00 Indicates a manual callout box
Test protocol
Cumulative Matching Characteristics (CMC) curves It is currently the most popular performance evaluation method in the field of pedestrian re recognition . Consider a simple single-gallery-shot situation , In each data set ID(gallery ID) There is only one example . For every recognition (query), The algorithm will be based on the image to be queried (query) To all gallery samples The distance is sorted from small to large ,CMC top-k accuracy The calculation is as follows :
Acc_k = 1, if top-k ranked gallery samples contain query identity
Acc_k = 0, otherwise
- 1.
- 2.
This is a shifted step function, The final CMC curve (curve) Through the analysis of all queries Of shifted step functions Take the average to get . Although in single-gallery-shot Under the circumstances ,CMC There is a clear definition , But in multi-gallery-shot Under the circumstances , Its definition is not clear , Because of every gallery identity There could be multiple instances.
Market-1501 in Query and gallery Sets may come from the same camera perspective , But for each query identity, He / She comes from the same camera gallery samples Will be excluded . For each gallery identity, They don't just randomly sample one instance. This means calculating CMC when , query Will always match gallery in “ The most simple ” A positive sample of , Instead of focusing on other positive samples that are more difficult to identify .bounding_box_test The folder is gallery sample ,bounding_box_train The folder is train sample ,query The folder is query sample
You can see that from the top , stay multi-gallery-shot Under the circumstances ,CMC The assessment is flawed . therefore , Also used mAP(mean average precsion) As an evaluation indicator .mAP May be considered as PR The area under the curve , That is, the average precision .
Download address
State of the art
Citation
If you use this dataset, please kindly cite this paper:
@inproceedings{zheng2015scalable,
title={Scalable Person Re-identification: A Benchmark},
author={Zheng, Liang and Shen, Liyue and Tian, Lu and Wang, Shengjin and Wang, Jingdong and Tian, Qi},
booktitle={Computer Vision, IEEE International Conference on},
year={2015}
}
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
reference
- Zheng, Liang, et al. “Scalable Person Re-identification: A Benchmark.” IEEE International Conference on Computer Vision IEEE Computer Society, 2015:1116-1124.
- Liang Zheng
- Person re-ID
边栏推荐
- Global and Chinese markets of PIM analyzers 2022-2028: Research Report on technology, participants, trends, market size and share
- C language do while loop classic Level 2 questions
- Functions: Finding Roots of equations
- Flash implements forced login
- JDBC 的四种连接方式 直接上代码
- Global and Chinese markets of MPV ACC ECU 2022-2028: Research Report on technology, participants, trends, market size and share
- 安全测试入门介绍
- Database monitoring SQL execution
- Matplotlib绘图快速入门
- Global and Chinese markets for complex programmable logic devices 2022-2028: Research Report on technology, participants, trends, market size and share
猜你喜欢

The minimum number of operations to convert strings in leetcode simple problem

The salary of testers is polarized. How to become an automated test with a monthly salary of 20K?

Fundamentals of digital circuits (II) logic algebra

150 common interview questions for software testing in large factories. Serious thinking is very valuable for your interview

Statistics 8th Edition Jia Junping Chapter 2 after class exercises and answer summary

HackTheBox-Emdee five for life

Opencv recognition of face in image

CSAPP Shell Lab 实验报告

Fundamentals of digital circuits (I) number system and code system

Cc36 different subsequences
随机推荐
Sleep quality today 81 points
JDBC 的四种连接方式 直接上代码
UCORE lab8 file system experiment report
Sorting odd and even subscripts respectively for leetcode simple problem
ucore lab5用户进程管理 实验报告
Pointeurs: maximum, minimum et moyenne
Install and run tensorflow object detection API video object recognition system of Google open source
If the position is absolute, touchablehighlight cannot be clicked - touchablehighlight not clickable if position absolute
[oiclass] maximum formula
Vysor uses WiFi wireless connection for screen projection_ Operate the mobile phone on the computer_ Wireless debugging -- uniapp native development 008
[pointer] find the length of the string
后台登录系统,JDBC连接数据库,做小案例练习
ucore lab8 文件系统 实验报告
Using flask_ Whooshalchemyplus Jieba realizes global search of flask
MySQL development - advanced query - take a good look at how it suits you
The minimum number of operations to convert strings in leetcode simple problem
To brush the video, it's better to see if you have mastered these interview questions. Slowly accumulating a monthly income of more than 10000 is not a dream.
Zhejiang University Edition "C language programming experiment and exercise guide (3rd Edition)" topic set
Global and Chinese market of RF shielding room 2022-2028: Research Report on technology, participants, trends, market size and share
Global and Chinese markets of MPV ACC ECU 2022-2028: Research Report on technology, participants, trends, market size and share