当前位置:网站首页>Build your own application based on Google's open source tensorflow object detection API video object recognition system (I)
Build your own application based on Google's open source tensorflow object detection API video object recognition system (I)
2022-07-06 14:53:00 【gmHappy】
Based on the first part Install and run Google open source TensorFlow Object Detection API Video object recognition system , Build your own application .
Replace the test image
Analysis of the source code :
The official test pictures are placed in test_images Under the table of contents , The name format is image{}.jpg(image+ Digital format ), Cycle two (image1.jpg、image2.jpg), To replace your own test image, just delete the original test_images Picture of catalog , Change your picture to image{}.jpg Format , If there are more than two pictures, modify range(1,?) that will do .
Model replacement
Analysis of the source code :
Model description address , As shown in the figure below, select the model you need to download :
The source code will be MODEL_NAME Replace it with the model you need , Pay attention to adding a timestamp
Integrate into your own PYTHON project
newly build PYTHON project , Any project name , The catalog results are as follows :
The whole compiled in the previous article object_detection Copy the directory to object_detection\object_detection\ Next ,
newly build test_images Store test pictures , The compiled object_detection/data Copy the directory to object_detection\ Next ,
Transfer the downloaded model ssd_mobilenet_v2_coco_2018_03_29.tar.gz copy to object_detection\ Next ,
newly build ImageTest.py.
So much nonsense , Start coding :
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops
if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
# This is needed to display the images.
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
##Model preparation##
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v2_coco_2018_03_29'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
## Download Model##
#opener = urllib.request.URLopener()
#opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
## Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
## Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.
- 133.
- 134.
- 135.
- 136.
- 137.
- 138.
- 139.
- 140.
- 141.
- 142.
- 143.
- 144.
- 145.
- 146.
- 147.
The above code will modify the source code :
Change it to
Change it to ( The model has been downloaded and put , No need to download again )
Change it to ( New addition plt.show(), You can't show it without pictures )
Since then , The TensorFlow Object Detection API Integrate into your own project .
边栏推荐
- Database monitoring SQL execution
- Vysor uses WiFi wireless connection for screen projection_ Operate the mobile phone on the computer_ Wireless debugging -- uniapp native development 008
- [pointer] use the insertion sorting method to arrange n numbers from small to large
- Software testing interview summary - common interview questions
- JDBC read this article is enough
- Always of SystemVerilog usage_ comb 、always_ iff
- 《统计学》第八版贾俊平第十章方差分析知识点总结及课后习题答案
- Detailed introduction to dynamic programming (with examples)
- 【指针】查找最大的字符串
- 【指针】八进制转换为十进制
猜你喜欢
Don't you even look at such a detailed and comprehensive written software test question?
Fundamentals of digital circuit (V) arithmetic operation circuit
The common methods of servlet context, session and request objects and the scope of storing data in servlet.
Es full text index
《统计学》第八版贾俊平第九章分类数据分析知识点总结及课后习题答案
Transplant hummingbird e203 core to Da Vinci pro35t [Jichuang xinlai risc-v Cup] (I)
Login the system in the background, connect the database with JDBC, and do small case exercises
Summary of thread implementation
移植蜂鸟E203内核至达芬奇pro35T【集创芯来RISC-V杯】(一)
Fundamentals of digital circuits (III) encoder and decoder
随机推荐
《统计学》第八版贾俊平第九章分类数据分析知识点总结及课后习题答案
The salary of testers is polarized. How to become an automated test with a monthly salary of 20K?
《统计学》第八版贾俊平第五章概率与概率分布
JDBC 的四种连接方式 直接上代码
《统计学》第八版贾俊平第十一章一元线性回归知识点总结及课后习题答案
函数:字符串反序存放
Proceedingjoinpoint API use
Function: calculates the number of uppercase letters in a string
函数:求1-1/2+1/3-1/4+1/5-1/6+1/7-…+1/n
Summary of thread implementation
函数:求两个正数的最大公约数和最小公倍
《统计学》第八版贾俊平第一章课后习题及答案总结
Always of SystemVerilog usage_ comb 、always_ iff
【指针】统计一字符串在另一个字符串中出现的次数
JDBC read this article is enough
Flash implements forced login
刷视频的功夫,不如看看这些面试题你掌握了没有,慢慢积累月入过万不是梦。
关于交换a和b的值的四种方法
Statistics, 8th Edition, Jia Junping, Chapter 6 Summary of knowledge points of statistics and sampling distribution and answers to exercises after class
Why can swing implement a form program by inheriting the JFrame class?