当前位置:网站首页>Build your own application based on Google's open source tensorflow object detection API video object recognition system (I)
Build your own application based on Google's open source tensorflow object detection API video object recognition system (I)
2022-07-06 14:53:00 【gmHappy】
Based on the first part Install and run Google open source TensorFlow Object Detection API Video object recognition system , Build your own application .
Replace the test image
Analysis of the source code :
The official test pictures are placed in test_images Under the table of contents , The name format is image{}.jpg(image+ Digital format ), Cycle two (image1.jpg、image2.jpg), To replace your own test image, just delete the original test_images Picture of catalog , Change your picture to image{}.jpg Format , If there are more than two pictures, modify range(1,?) that will do .
Model replacement
Analysis of the source code :
Model description address , As shown in the figure below, select the model you need to download :
The source code will be MODEL_NAME Replace it with the model you need , Pay attention to adding a timestamp
Integrate into your own PYTHON project
newly build PYTHON project , Any project name , The catalog results are as follows :
The whole compiled in the previous article object_detection Copy the directory to object_detection\object_detection\ Next ,
newly build test_images Store test pictures , The compiled object_detection/data Copy the directory to object_detection\ Next ,
Transfer the downloaded model ssd_mobilenet_v2_coco_2018_03_29.tar.gz copy to object_detection\ Next ,
newly build ImageTest.py.
So much nonsense , Start coding :
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops
if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
# This is needed to display the images.
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
##Model preparation##
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v2_coco_2018_03_29'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
## Download Model##
#opener = urllib.request.URLopener()
#opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
## Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
## Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
- 129.
- 130.
- 131.
- 132.
- 133.
- 134.
- 135.
- 136.
- 137.
- 138.
- 139.
- 140.
- 141.
- 142.
- 143.
- 144.
- 145.
- 146.
- 147.
The above code will modify the source code :
Change it to
Change it to ( The model has been downloaded and put , No need to download again )
Change it to ( New addition plt.show(), You can't show it without pictures )
Since then , The TensorFlow Object Detection API Integrate into your own project .
边栏推荐
- {1,2,3,2,5}查重问题
- Pointers: maximum, minimum, and average
- Soft exam information system project manager_ Project set project portfolio management --- Senior Information System Project Manager of soft exam 025
- Overview of LNMP architecture and construction of related services
- 指针:最大值、最小值和平均值
- Login the system in the background, connect the database with JDBC, and do small case exercises
- Interview Essentials: what is the mysterious framework asking?
- Zhejiang University Edition "C language programming experiment and exercise guide (3rd Edition)" topic set
- Statistics 8th Edition Jia Junping Chapter IX summary of knowledge points of classified data analysis and answers to exercises after class
- 四元数---基本概念(转载)
猜你喜欢
Uibutton status exploration and customization
《统计学》第八版贾俊平第四章总结及课后习题答案
Database monitoring SQL execution
Matplotlib绘图快速入门
数字电路基础(一)数制与码制
《统计学》第八版贾俊平第十二章多元线性回归知识点总结及课后习题答案
What level do 18K test engineers want? Take a look at the interview experience of a 26 year old test engineer
四元数---基本概念(转载)
Wang Shuang's detailed learning notes of assembly language II: registers
Mysql的事务是什么?什么是脏读,什么是幻读?不可重复读?
随机推荐
数字电路基础(五)算术运算电路
Statistics 8th Edition Jia Junping Chapter IX summary of knowledge points of classified data analysis and answers to exercises after class
Statistics 8th Edition Jia Junping Chapter 2 after class exercises and answer summary
Statistics 8th Edition Jia Junping Chapter 1 after class exercises and answers summary
Zhejiang University Edition "C language programming experiment and exercise guide (3rd Edition)" topic set
使用 flask_whooshalchemyplus jieba实现flask的全局搜索
Intranet information collection of Intranet penetration (3)
[oiclass] maximum formula
Query method of database multi table link
Fundamentals of digital circuits (I) number system and code system
Statistics, 8th Edition, Jia Junping, Chapter 11 summary of knowledge points of univariate linear regression and answers to exercises after class
How to use Moment. JS to check whether the current time is between 2 times
线程的实现方式总结
. Net6: develop modern 3D industrial software based on WPF (2)
指针:最大值、最小值和平均值
Get started with Matplotlib drawing
《统计学》第八版贾俊平第十二章多元线性回归知识点总结及课后习题答案
My first blog
Fundamentals of digital circuit (V) arithmetic operation circuit
[pointer] find the value of the largest element in the two-dimensional array