当前位置:网站首页>Implement secondary index with Gaussian redis
Implement secondary index with Gaussian redis
2022-07-07 20:27:00 【Huawei cloud developer Alliance】
Abstract : gaussian Redis Build secondary index of business , Low cost , High performance , Achieve win-win performance and cost .
This article is shared from Huawei cloud community 《 Hua Wei Yun GaussDB(for Redis) Uncover secrets 21 period : Use Gauss Redis Implement secondary index 》, author : gaussian Redis The official blog .
One 、 background
Bring up the index , The first impression is the noun of database , however , gaussian Redis You can also implement secondary indexing !!! gaussian Redis The secondary index in generally uses zset To achieve . gaussian Redis Compared to open source Redis It has higher stability 、 And cost advantage , Use Gauss Redis zset Realize the secondary index of business , You can get a win-win situation of performance and cost .
The essence of index is to use ordered structure to speed up query , So by Zset Structural Gauss Redis It can easily realize the index of numeric type and character type .
• Numeric type index (zset Sort by score ):


• Character type index ( When the scores are the same zset Sort by dictionary order ):


Let's cut into two classic business scenarios , See how to use Gauss Redis To build a stable and reliable secondary index system .
Two 、 Scene one : Complete the dictionary
When typing a query in the browser , Browsers usually recommend searches with the same prefix according to the possibility , This kind of scene can use Gauss Redis The secondary index function is realized .

2.1 Basic plan
The easiest way is to add each query of the user to the index . When user input completion recommendation is required , Use ZRANGEBYLEX Just execute the range query . If you don't want to return too many entries , gaussian Redis Also supports the use of LIMIT Options to reduce the number of results .
• Search the user banana Add to index :
ZADD myindex 0 banana:1• Suppose the user enters “bit”, And we want to offer the possibility to “bit” Search keywords at the beginning .
ZRANGEBYLEX myindex "[bit" "[bit\xff"That is to use ZRANGEBYLEX Make a range query , The query range is the string that the user is now entering , And the same string plus a trailing byte 255(\xff). In this way , We can get all strings prefixed with the string typed by the user .
2.2 Frequency related dictionary completion
In practical applications, we usually want to automatically sort and complete the entries according to the frequency of occurrence , At the same time, it can eliminate the entries that are no longer popular , And automatically adapt to future input . We can still use Gauss Redis Of ZSet Structure to achieve this goal , Just in the index structure , Not only do you need to store search terms , You also need to store the frequency associated with it .
• Search the user banana Add to index
• Judge banana Whether there is
ZRANGEBYLEX myindex "[banana:" + LIMIT 0 1• hypothesis banana non-existent , add to banana:1, among 1 It's the frequency
ZADD myindex 0 banana:1• hypothesis banana There is , You need to increase the frequency
if ZRANGEBYLEX myindex "[banana:" + LIMIT 0 1 The frequency returned in is 1
1) Delete old entries :
ZREM myindex 0 banana:12) Add one frequency to rejoin :
ZADD myindex 0 banana:2Please note that , Because there may be concurrent updates , Therefore, it should pass Lua The script sends the above three commands , use Lua script Automatically get the old count and add the entry again after increasing the score .
• Suppose the user enters “banana”, And we want to provide similar search keywords . adopt ZRANGEBYLEX The results are sorted by frequency .
ZRANGEBYLEX myindex "[banana:" + LIMIT 0 10
1) "banana:123"
2) "banaooo:1"
3) "banned user:49"
4) "banning:89"• Use streaming algorithm to clear infrequent input . Select an entry randomly from the returned entries , Subtract its score 1, Then add it again with the new score . however , If the new score is 0, We need to delete this entry from the list .
• If the frequency of randomly selected items is 1, Such as banaooo:1
ZREM myindex 0 banaooo:1• If the frequency of randomly selected items is greater than 1, Such as banana:123
ZREM myindex 0 banana:123
ZADD myindex 0 banana:122In the long run , The index will contain popular searches , If popular searches change over time , It will also automatically adapt .
3、 ... and 、 Scene two : Multidimensional index
Except for queries on a single dimension , gaussian Redis It also supports retrieval in multidimensional data . for example , Retrieve all ages at 50 to 55 Between the ages of , At the same time, the salary is 70000 to 85000 Between people . The key to realize multi-dimensional secondary index is to convert two-dimensional data into one-dimensional data through coding , Then based on Gauss Redis zset Storage .
Represent two-dimensional indexes from a visual perspective . There are some points in the space below , They represent our data samples , among x and y It's two variables , The maximum values are 400. The blue box in the picture represents our query . We hope to inquire x Be situated between 50 and 100 Between ,y Be situated between 100 and 300 All points between .

3.1 Data encoding
If the inserted data point is x = 75 and y = 200
1) fill 0( Data maximum is 400, So fill 3 position )
x = 075
y = 200
2) Interleave numbers , With x Represents the leftmost number , With y Represents the leftmost number , And so on , To create a code
027050
If you use 00 and 99 Replace the last two , namely 027000 to 027099,map return x and y, namely :
x = 70-79
y = 200-209
therefore , in the light of x=70-79 and y = 200-209 Two dimensional query , It can be encoded map become 027000 to 027099 One dimensional query , This can be achieved by Gauss Redis Of Zset The structure is easy to realize .

Empathy , We can aim at the last four / 6、 ... and /etc Perform the same operation with digits , So as to obtain a larger range .
3) Use binary
To obtain finer granularity , Data can be represented in binary , So when replacing numbers , Each time, you will get twice the original search scope . Suppose we only need 9 position ( To indicate at most 400 A number of values ), Our number in binary form will be :
x = 75 -> 001001011
y = 200 -> 011001000
After interweaving ,000111000011001010
Let's look at the use of 0s ad 1s Replace the last 2、4、6、8,... What is our range of bits :

3.2 Add a new element
If the inserted data point is x = 75 and y = 200
x = 75 and y = 200 Binary interleaved code is 000111000011001010,
ZADD myindex 0 0001110000110010103.3 Inquire about
Inquire about :x Be situated between 50 and 100 Between ,y Be situated between 100 and 300 All points between
Replace from index N Bit will give us a side length of 2^(N/2) Search box . therefore , What we need to do is to check the smaller size of the search box , And check the closest 2 The power of , And constantly divide the remaining space , Then use ZRANGEBYLEX To search .
Here is the sample code :
def spacequery(x0,y0,x1,y1,exp)
bits=exp*2
x_start = x0/(2**exp)
x_end = x1/(2**exp)
y_start = y0/(2**exp)
y_end = y1/(2**exp)
(x_start..x_end).each{|x|
(y_start..y_end).each{|y|
x_range_start = x*(2**exp)
x_range_end = x_range_start | ((2**exp)-1)
y_range_start = y*(2**exp)
y_range_end = y_range_start | ((2**exp)-1)
puts "#{x},#{y} x from #{x_range_start} to #{x_range_end}, y from #{y_range_start} to #{y_range_end}"
# Turn it into interleaved form for ZRANGEBYLEX query.
# We assume we need 9 bits for each integer, so the final
# interleaved representation will be 18 bits.
xbin = x_range_start.to_s(2).rjust(9,'0')
ybin = y_range_start.to_s(2).rjust(9,'0')
s = xbin.split("").zip(ybin.split("")).flatten.compact.join("")
# Now that we have the start of the range, calculate the end
# by replacing the specified number of bits from 0 to 1.
e = s[0..-(bits+1)]+("1"*bits)
puts "ZRANGEBYLEX myindex [#{s} [#{e}"
}
}
end
spacequery(50,100,100,300,6)Four 、 summary
This paper introduces how to pass Gauss Redis Build a secondary index , The secondary index is in e-commerce 、 chart (hexastore)、 Games and other fields have a wide range of application scenarios , gaussian redis There are many similar applications in Xianwang . gaussian Redis Based on the architecture of separation of storage and calculation , Rely on distributed storage pool to ensure strong data consistency , It can easily support the secondary index function , Provide stable and reliable services for enterprise customers 、 Super high concurrency , Core data storage services that can be rapidly and elastically expanded .
appendix
- The author of this article : Huawei cloud database GaussDB(for Redis) The team
- Hangzhou / Xi'an / Shenzhen resume delivery :[email protected]
- More product information , Welcome to the official blog :bbs.huaweicloud.com/blogs/248875
Click to follow , The first time to learn about Huawei's new cloud technology ~
边栏推荐
猜你喜欢

OneSpin | 解决IC设计中的硬件木马和安全信任问题
![[paper reading] maps: Multi-Agent Reinforcement Learning Based Portfolio Management System](/img/76/b725788272ba2dcdf866b28cbcc897.jpg)
[paper reading] maps: Multi-Agent Reinforcement Learning Based Portfolio Management System

php 获取图片信息的方法

Don't fall behind! Simple and easy-to-use low code development to quickly build an intelligent management information system
Klocwork code static analysis tool

如何满足医疗设备对安全性和保密性的双重需求?

微服务远程Debug,Nocalhost + Rainbond微服务开发第二弹

【论文阅读】MAPS: Multi-agent Reinforcement Learning-based Portfolio Management System

CodeSonar如何帮助无人机查找软件缺陷?

【mysql篇-基础篇】事务
随机推荐
You want to kill a port process, but you can't find it in the service list. You can find this process and kill it through the command line to reduce restarting the computer and find the root cause of
智能软件分析平台Embold
I Basic concepts
How to choose fund products? What fund is suitable to buy in July 2022?
Splicing and splitting of integer ints
如何满足医疗设备对安全性和保密性的双重需求?
VMWare中虚拟机网络配置
Tensorflow2.x下如何运行1.x的代码
PHP method of obtaining image information
大厂经典指针笔试题
Klocwork 代码静态分析工具
Measure the height of the building
想杀死某个端口进程,但在服务列表中却找不到,可以之间通过命令行找到这个进程并杀死该进程,减少重启电脑和找到问题根源。
华为CE交换机下载文件FTP步骤
[award publicity] issue 22 publicity of the award list in June 2022: Community star selection | Newcomer Award | blog synchronization | recommendation Award
Is it safe to open a stock account at present? Can I open an account online directly.
使用 BR 备份 TiDB 集群数据到 Azure Blob Storage
使用 BR 恢复 Azure Blob Storage 上的备份数据
Make this crmeb single merchant wechat mall system popular, so easy to use!
使用高斯Redis实现二级索引