当前位置:网站首页>Skimage learning (1)
Skimage learning (1)
2022-07-07 17:02:00 【Original knowledge】
1、 Generate structured elements
This example shows how to use skimage The function in . Generate morphology of structural elements . The title of each graph represents the function call .
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from skimage.morphology import (square, rectangle, diamond, disk, cube,
octahedron, ball, octagon, star)
# Square 、 Rectangle 、 The diamond 、 The disk 、 Cube 、 Octahedron 、 sphere 、 Octagon 、 Stars
# Generate 2D and 3D structuring elements.
struc_2d = {
"square(15)": square(15),
"rectangle(15, 10)": rectangle(15, 10),
"diamond(7)": diamond(7),
"disk(7)": disk(7),
"octagon(7, 4)": octagon(7, 4),
"star(5)": star(5)
}
struc_3d = {
"cube(11)": cube(11),
"octahedron(5)": octahedron(5),
"ball(5)": ball(35),
"ball(5)": ball(35),
}
# Visualize the elements.
fig = plt.figure(figsize=(8, 8))
idx = 1
#tems() Function returns a list of traversable ( Key value ) Tuple array .
''' plt.text(x, y, string, weight="bold", color="b") x: Abscissa of the location of the content of the note text y: The ordinate of the location where the annotation text content is located string: Note text content ,struc[i, j] number 0、1 weight: Thickness style of annotation text content '''
for title, struc in struc_2d.items():
ax = fig.add_subplot(4, 4, idx)#3 That's ok 3 Column , The position is
ax.imshow(struc, cmap="Greens", vmin=0, vmax=12)#ax Parameters are used to limit the range of values , Only will vmin and vmax Mapping values between , Usage is as follows
for i in range(struc.shape[0]):
for j in range(struc.shape[1]):
ax.text(j, i, struc[i, j], ha="center", va="center", color="w")
ax.set_axis_off()
ax.set_title(title)
idx += 1
for title, struc in struc_3d.items():
ax = fig.add_subplot(4, 4, idx, projection=Axes3D.name)
ax.voxels(struc)
ax.set_title(title)
idx += 1
fig.tight_layout()
plt.show()

2、 Images / Block view on array
This example demonstrates skimage.util() Medium view_as_blocks Use . When one wants to perform local operations on non overlapping image blocks , Block views are very useful . We use it skimage Medium astronaut. data , And its “ segmentation ” For all aspects . then , On each block , We can either gather the average value of this block , Maximum or median . The results are displayed together , Zoom the original astronaut image together with a third-order spline interpolation .
import numpy as np
from scipy import ndimage as ndi
from matplotlib import pyplot as plt
import matplotlib.cm as cm
from skimage import data
from skimage import color
from skimage.util import view_as_blocks
# get astronaut from skimage.data in grayscale
l = color.rgb2gray(data.astronaut())
#img=skimage.io.imread('11.jpg',)
#l = color.rgb2gray(img)
# size of blocks
block_shape = (4,4)
# Divide the astronaut picture into matrix blocks ( The size is block_shape)
view = view_as_blocks(l, block_shape)
# The last two dimensions merge into one , Become an array for easy operation
#img.shape[0]: The vertical size of the image ( Height ) img.shape[1]: The horizontal size of the image ( Width )
flatten_view = view.reshape(view.shape[0], view.shape[1], -1)
# By taking the “ mean value ”、“ Maximum ” or “ The median ” Resample the image .mean() The functionality : Find the mean
mean_view = np.mean(flatten_view, axis=2)
max_view = np.max(flatten_view, axis=2)
median_view = np.median(flatten_view, axis=2)
# Draw a subgraph ,sharex and sharey: surface ⽰ Whether the attributes of the coordinate axis are the same
fig, axes = plt.subplots(2, 2, figsize=(8, 8), sharex=True, sharey=True)
ax = axes.ravel()# Flatten the multidimensional data to ⼀ D data , It is equivalent to reshape(-1, order=order) .
''' https://vimsky.com/examples/usage/python-scipy.ndimage.zoom.html https://www.jianshu.com/p/909851f46411 ndi.zoom(input,zoom,output=None,order,mode='constant',cval=0.0,prefilter=True) Scale the array . Scale the array using spline interpolation in the requested order . input: Input pictures as an array zoom: Floating point numbers or arrays . If it's a floating point number , Zoom in and out the same multiple for each axis . If it's an array , Then assign a value to each axis . output: Output , The default is None order: integer ( Range 0-5) The order of spline interpolation , The default is 3. See later '''
l_resized = ndi.zoom(l, 2, order=3)
ax[0].set_title("Original rescaled with\n spline interpolation (order=3)")
ax[0].imshow(l_resized, extent=(-0.5, 128.5, 128.5, -0.5),
cmap=cm.Greys_r)
ax[1].set_title("Block view with\n local mean pooling")
ax[1].imshow(mean_view, cmap=cm.Greys_r)
ax[2].set_title("Block view with\n local max pooling")
ax[2].imshow(max_view, cmap=cm.Greys_r)
ax[3].set_title("Block view with\n local median pooling")
ax[3].imshow(median_view, cmap=cm.Greys_r)
for a in ax:
a.set_axis_off()
fig.tight_layout()
plt.show()

3、 Easy to use NumPy Operation to process images
This script explains how to use the basic NumPy operation , For example, slice 、 Shielding and fancy indexing , To modify the pixel value of the image .
# Use basic NumPy operation , For example, slice 、 Shielding and fancy indexing , To modify the pixel value of the image .
import numpy as np
from skimage import data
import matplotlib.pyplot as plt
# Read in ,camera yes ndarray Array of
camera = data.camera()
camera[:10] = 0# The first 0-9 Set as 0
mask = camera < 87#‘< ’ For conditional statements , Only return “ True and false ”. take camera Medium pixel value <87 The position of is marked as true, Others are false
camera[mask] = 255# recycling mask Marked position (true and false), Will be worth true The value of the set 255
inds_x = np.arange(len(camera))# Abscissa 0-511,arange(a,b,c) Function generation a~b( barring b), The interval is c An array of , ginseng 511 End point , Starting point 0, Step size is the default value 1.
inds_y = (4 * inds_x) % len(camera)# The generation step is 4 Array of , Ordinate
camera[inds_x, inds_y] = 0 # Press inds_x, inds_y The value of sets the pixel to zero
l_x, l_y = camera.shape[0], camera.shape[1]# Read the matrix length
print(l_x,l_y)
X, Y = np.ogrid[:l_x, :l_y]# Produce two long 512 Two dimensional array of
print(X,Y)
outer_disk_mask = (X - l_x / 2)**2 + (Y - l_y / 2)**2 > (l_x / 2)**2# Generate circular grid coordinates
camera[outer_disk_mask] = 0 # Assign , Everything except circles turns black
plt.figure(figsize=(4, 4)) # establish figure The size ratio of
plt.imshow(camera, cmap='gray') # Display images
plt.axis('off')
plt.show()

边栏推荐
- Deep listening array deep listening watch
- SqlServer2014+: 创建表的同时创建索引
- LeetCode 1477. Find two subarrays with sum as the target value and no overlap
- Have fun | latest progress of "spacecraft program" activities
- 两类更新丢失及解决办法
- AutoLISP series (2): function function 2
- Binary search tree (features)
- time标准库
- Personal notes of graphics (1)
- 【视频/音频数据处理】上海道宁为您带来Elecard下载、试用、教程
猜你喜欢
正在准备面试,分享面经

Temperature sensor chip used in temperature detector

A tour of gRPC:03 - proto序列化/反序列化

Pisa-Proxy SQL 解析之 Lex & Yacc

Master this set of refined Android advanced interview questions analysis, oppoandroid interview questions

Lowcode: four ways to help transportation companies enhance supply chain management

字节跳动高工面试,轻松入门flutter
最新高频Android面试题目分享,带你一起探究Android事件分发机制

Introduction and use of gateway
As an Android Developer programmer, Android advanced interview
随机推荐
字节跳动高工面试,轻松入门flutter
LeetCode 312. 戳气球 每日一题
整理几个重要的Android知识,高级Android开发面试题
LeetCode 152. Product maximum subarray daily question
DAPP defi NFT LP single and dual currency liquidity mining system development details and source code
LeetCode 300. Daily question of the longest increasing subsequence
爬虫(17) - 面试(2) | 爬虫面试题库
运算符
LeetCode-SQL第一天
LeetCode 1981. 最小化目标值与所选元素的差 每日一题
QT video transmission
The process of creating custom controls in QT to encapsulating them into toolbars (II): encapsulating custom controls into toolbars
Prediction - Grey Prediction
Have fun | latest progress of "spacecraft program" activities
Personal notes of graphics (1)
Opencv personal notes
LeetCode 1986. 完成任务的最少工作时间段 每日一题
Spark Tuning (III): persistence reduces secondary queries
skimage学习(3)——使灰度滤镜适应 RGB 图像、免疫组化染色分离颜色、过滤区域最大值
LeetCode 1654. 到家的最少跳跃次数 每日一题