当前位置:网站首页>ML's shap: Based on the adult census income binary prediction data set (whether the predicted annual income exceeds 50K), use the shap decision diagram combined with the lightgbm model to realize the
ML's shap: Based on the adult census income binary prediction data set (whether the predicted annual income exceeds 50K), use the shap decision diagram combined with the lightgbm model to realize the
2022-07-07 05:58:00 【A Virgo procedural ape】
ML And shap: be based on adult Census income two classification forecast data set ( Whether the predicted annual income exceeds 50k) utilize shap Decision diagram combination LightGBM A detailed introduction to the case of outlier detection based on the model
Catalog
# 2.1、 Preliminary screening of modeling features
# 2.2、 Target feature binarization
# 2.3、 Category feature coding digitization
# 2.4、 Separate features from labels
#3、 Model training and reasoning
# 3.2、 Model building and training
# 4、 utilize shap Decision graph for outlier detection
# 4.1、 A small part of the original data and the preprocessed data are sampled respectively
# 4.2、 establish Explainer And calculate SHAP value
# 4.3、shap Visualization of decision diagram
Related articles
ML And shap: be based on adult Census income two classification forecast data set ( Whether the predicted annual income exceeds 50k) utilize shap Decision diagram combination LightGBM A detailed introduction to the case of outlier detection based on the model
ML And shap: be based on adult Census income two classification forecast data set ( Whether the predicted annual income exceeds 50k) utilize shap Decision diagram combination LightGBM Model implementation of outlier detection case detailed strategy implementation
be based on adult Census income two classification forecast data set ( Whether the predicted annual income exceeds 50k) utilize shap Decision diagram combination LightGBM A detailed introduction to the case of outlier detection based on the model
# 1、 Define datasets
age | workclass | fnlwgt | education | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | salary |
39 | State-gov | 77516 | Bachelors | 13 | Never-married | Adm-clerical | Not-in-family | White | Male | 2174 | 0 | 40 | United-States | <=50K |
50 | Self-emp-not-inc | 83311 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 13 | United-States | <=50K |
38 | Private | 215646 | HS-grad | 9 | Divorced | Handlers-cleaners | Not-in-family | White | Male | 0 | 0 | 40 | United-States | <=50K |
53 | Private | 234721 | 11th | 7 | Married-civ-spouse | Handlers-cleaners | Husband | Black | Male | 0 | 0 | 40 | United-States | <=50K |
28 | Private | 338409 | Bachelors | 13 | Married-civ-spouse | Prof-specialty | Wife | Black | Female | 0 | 0 | 40 | Cuba | <=50K |
37 | Private | 284582 | Masters | 14 | Married-civ-spouse | Exec-managerial | Wife | White | Female | 0 | 0 | 40 | United-States | <=50K |
49 | Private | 160187 | 9th | 5 | Married-spouse-absent | Other-service | Not-in-family | Black | Female | 0 | 0 | 16 | Jamaica | <=50K |
52 | Self-emp-not-inc | 209642 | HS-grad | 9 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 0 | 45 | United-States | >50K |
31 | Private | 45781 | Masters | 14 | Never-married | Prof-specialty | Not-in-family | White | Female | 14084 | 0 | 50 | United-States | >50K |
42 | Private | 159449 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 5178 | 0 | 40 | United-States | >50K |
# 2、 Data set preprocessing
# 2.1、 Preliminary screening of modeling features
df.columns
14
# 2.2、 Target feature binarization
# 2.3、 Category feature coding digitization
age | workclass | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | salary | |
0 | 39 | 7 | 13 | 4 | 1 | 1 | 4 | 1 | 2174 | 0 | 40 | 39 | 0 |
1 | 50 | 6 | 13 | 2 | 4 | 0 | 4 | 1 | 0 | 0 | 13 | 39 | 0 |
2 | 38 | 4 | 9 | 0 | 6 | 1 | 4 | 1 | 0 | 0 | 40 | 39 | 0 |
3 | 53 | 4 | 7 | 2 | 6 | 0 | 2 | 1 | 0 | 0 | 40 | 39 | 0 |
4 | 28 | 4 | 13 | 2 | 10 | 5 | 2 | 0 | 0 | 0 | 40 | 5 | 0 |
5 | 37 | 4 | 14 | 2 | 4 | 5 | 4 | 0 | 0 | 0 | 40 | 39 | 0 |
6 | 49 | 4 | 5 | 3 | 8 | 1 | 2 | 0 | 0 | 0 | 16 | 23 | 0 |
7 | 52 | 6 | 9 | 2 | 4 | 0 | 4 | 1 | 0 | 0 | 45 | 39 | 1 |
8 | 31 | 4 | 14 | 4 | 10 | 1 | 4 | 0 | 14084 | 0 | 50 | 39 | 1 |
9 | 42 | 4 | 13 | 2 | 4 | 0 | 4 | 1 | 5178 | 0 | 40 | 39 | 1 |
# 2.4、 Separate features from labels
age | workclass | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country |
39 | 7 | 13 | 4 | 1 | 1 | 4 | 1 | 2174 | 0 | 40 | 39 |
50 | 6 | 13 | 2 | 4 | 0 | 4 | 1 | 0 | 0 | 13 | 39 |
38 | 4 | 9 | 0 | 6 | 1 | 4 | 1 | 0 | 0 | 40 | 39 |
53 | 4 | 7 | 2 | 6 | 0 | 2 | 1 | 0 | 0 | 40 | 39 |
28 | 4 | 13 | 2 | 10 | 5 | 2 | 0 | 0 | 0 | 40 | 5 |
37 | 4 | 14 | 2 | 4 | 5 | 4 | 0 | 0 | 0 | 40 | 39 |
49 | 4 | 5 | 3 | 8 | 1 | 2 | 0 | 0 | 0 | 16 | 23 |
52 | 6 | 9 | 2 | 4 | 0 | 4 | 1 | 0 | 0 | 45 | 39 |
31 | 4 | 14 | 4 | 10 | 1 | 4 | 0 | 14084 | 0 | 50 | 39 |
42 | 4 | 13 | 2 | 4 | 0 | 4 | 1 | 5178 | 0 | 40 | 39 |
salary |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
#3、 Model training and reasoning
# 3.1、 Data set segmentation
X_test
age | workclass | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | |
1342 | 47 | 3 | 10 | 0 | 1 | 1 | 4 | 1 | 0 | 0 | 40 | 35 |
1338 | 71 | 3 | 13 | 0 | 13 | 3 | 4 | 0 | 2329 | 0 | 16 | 35 |
189 | 58 | 6 | 16 | 2 | 10 | 0 | 4 | 1 | 0 | 0 | 1 | 35 |
1332 | 23 | 3 | 9 | 4 | 7 | 1 | 2 | 1 | 0 | 0 | 35 | 35 |
1816 | 46 | 2 | 9 | 2 | 3 | 0 | 4 | 1 | 0 | 1902 | 40 | 35 |
1685 | 37 | 3 | 9 | 2 | 4 | 0 | 4 | 1 | 0 | 1902 | 45 | 35 |
657 | 34 | 3 | 9 | 2 | 3 | 0 | 4 | 1 | 0 | 0 | 45 | 35 |
1846 | 21 | 0 | 10 | 4 | 0 | 3 | 4 | 0 | 0 | 0 | 40 | 35 |
554 | 33 | 1 | 11 | 0 | 3 | 4 | 2 | 0 | 0 | 0 | 40 | 35 |
1963 | 49 | 3 | 13 | 2 | 12 | 0 | 4 | 1 | 0 | 0 | 50 | 35 |
# 3.2、 Model building and training
params = {
"max_bin": 512, "learning_rate": 0.05,
"boosting_type": "gbdt", "objective": "binary",
"metric": "binary_logloss", "verbose": -1,
"min_data": 100, "random_state": 1,
"boost_from_average": True, "num_leaves": 10 }
LGBMC = lgb.train(params, lgbD_train, 10000,
valid_sets=[lgbD_test],
early_stopping_rounds=50,
verbose_eval=1000)
# 3.3、 Model to predict
age | workclass | education_num | marital_status | occupation | relationship | race | sex | capital_gain | capital_loss | hours_per_week | native_country | y_test_predi | y_test | |
1342 | 47 | 3 | 10 | 0 | 1 | 1 | 4 | 1 | 0 | 0 | 40 | 35 | 0.045225575 | 0 |
1338 | 71 | 3 | 13 | 0 | 13 | 3 | 4 | 0 | 2329 | 0 | 16 | 35 | 0.074799172 | 0 |
189 | 58 | 6 | 16 | 2 | 10 | 0 | 4 | 1 | 0 | 0 | 1 | 35 | 0.30014332 | 1 |
1332 | 23 | 3 | 9 | 4 | 7 | 1 | 2 | 1 | 0 | 0 | 35 | 35 | 0.003966427 | 0 |
1816 | 46 | 2 | 9 | 2 | 3 | 0 | 4 | 1 | 0 | 1902 | 40 | 35 | 0.363861294 | 0 |
1685 | 37 | 3 | 9 | 2 | 4 | 0 | 4 | 1 | 0 | 1902 | 45 | 35 | 0.738628671 | 1 |
657 | 34 | 3 | 9 | 2 | 3 | 0 | 4 | 1 | 0 | 0 | 45 | 35 | 0.376412174 | 0 |
1846 | 21 | 0 | 10 | 4 | 0 | 3 | 4 | 0 | 0 | 0 | 40 | 35 | 0.002309884 | 0 |
554 | 33 | 1 | 11 | 0 | 3 | 4 | 2 | 0 | 0 | 0 | 40 | 35 | 0.060345836 | 1 |
1963 | 49 | 3 | 13 | 2 | 12 | 0 | 4 | 1 | 0 | 0 | 50 | 35 | 0.703506366 | 1 |
# 4、 utilize shap Decision graph for outlier detection
# 4.1、 A small part of the original data and the preprocessed data are sampled respectively
# 4.2、 establish Explainer And calculate SHAP value
shap2exp.values.shape (100, 12, 2)
[[[-5.97178729e-01 5.97178729e-01]
[-5.18879297e-03 5.18879297e-03]
[ 1.70566444e-01 -1.70566444e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 6.58794799e-02 -6.58794799e-02]
[ 0.00000000e+00 0.00000000e+00]]
[[-4.45574118e-01 4.45574118e-01]
[-1.00665452e-03 1.00665452e-03]
[-8.12237233e-01 8.12237233e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 8.56381961e-01 -8.56381961e-01]
[ 0.00000000e+00 0.00000000e+00]]
[[-3.87412165e-01 3.87412165e-01]
[ 1.52848351e-01 -1.52848351e-01]
[-1.02755954e+00 1.02755954e+00]
...
[ 0.00000000e+00 0.00000000e+00]
[ 1.10240434e+00 -1.10240434e+00]
[ 0.00000000e+00 0.00000000e+00]]
...
[[-5.28928223e-01 5.28928223e-01]
[ 7.14116015e-03 -7.14116015e-03]
[-8.82241728e-01 8.82241728e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 7.47521189e-02 -7.47521189e-02]
[ 0.00000000e+00 0.00000000e+00]]
[[ 2.20002984e+00 -2.20002984e+00]
[ 7.75916086e-03 -7.75916086e-03]
[ 3.95152810e-01 -3.95152810e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 1.52566789e-01 -1.52566789e-01]
[ 0.00000000e+00 0.00000000e+00]]
[[-8.28965461e-01 8.28965461e-01]
[-4.43687947e-02 4.43687947e-02]
[ 3.37305776e-01 -3.37305776e-01]
...
[ 0.00000000e+00 0.00000000e+00]
[ 8.26477289e-03 -8.26477289e-03]
[ 0.00000000e+00 0.00000000e+00]]]
shap2array.shape (100, 12)
LightGBM binary classifier with TreeExplainer shap values output has changed to a list of ndarray
[[ 5.97178729e-01 5.18879297e-03 -1.70566444e-01 ... 0.00000000e+00
-6.58794799e-02 0.00000000e+00]
[ 4.45574118e-01 1.00665452e-03 8.12237233e-01 ... 0.00000000e+00
-8.56381961e-01 0.00000000e+00]
[ 3.87412165e-01 -1.52848351e-01 1.02755954e+00 ... 0.00000000e+00
-1.10240434e+00 0.00000000e+00]
...
[ 5.28928223e-01 -7.14116015e-03 8.82241728e-01 ... 0.00000000e+00
-7.47521189e-02 0.00000000e+00]
[-2.20002984e+00 -7.75916086e-03 -3.95152810e-01 ... 0.00000000e+00
-1.52566789e-01 0.00000000e+00]
[ 8.28965461e-01 4.43687947e-02 -3.37305776e-01 ... 0.00000000e+00
-8.26477289e-03 0.00000000e+00]]
mode_exp_value: -1.9982244224656025
# 4.3、shap Visualization of decision diagram
# Stacking the decision diagrams together helps shap Locate outliers , That is, the sample deviates from the dense group
边栏推荐
- Message queuing: how to ensure that messages are not lost
- How to improve website weight
- 微信小程序蓝牙连接硬件设备并进行通讯,小程序蓝牙因距离异常断开自动重连,js实现crc校验位
- 每秒10W次分词搜索,产品经理又提了一个需求!!!(收藏)
- 980. Different path III DFS
- 牙齿干细胞的存储问题(未完待续)
- Randomly generate session_ id
- Hcip eighth operation
- [daily training -- Tencent selected 50] 235 Nearest common ancestor of binary search tree
- PTA 天梯赛练习题集 L2-003 月饼 测试点2,测试点3分析
猜你喜欢
pytorch_ 01 automatic derivation mechanism
Hcip seventh operation
Web architecture design process
Why does the data center need a set of infrastructure visual management system
Five core elements of architecture design
【FPGA教程案例14】基于vivado核的FIR滤波器设计与实现
搞懂fastjson 对泛型的反序列化原理
目标检测中的BBox 回归损失函数-L2,smooth L1,IoU,GIoU,DIoU,CIoU,Focal-EIoU,Alpha-IoU,SIoU
Check Point:企业部署零信任网络(ZTNA)的核心要素
[云原生]微服务架构是什么?
随机推荐
原生小程序 之 input切換 text與password類型
力扣102题:二叉树的层序遍历
云加速,帮助您有效解决攻击问题!
Flask1.1.4 Werkzeug1.0.1 源碼分析:啟動流程
[云原生]微服务架构是什么?
980. Different path III DFS
SAP Spartacus checkout 流程的扩展(extend)实现介绍
C nullable type
如果不知道这4种缓存模式,敢说懂缓存吗?
win配置pm2开机自启node项目
PowerPivot——DAX(函数)
Value range of various datetimes in SQL Server 2008
R语言【逻辑控制】【数学运算】
R language [logic control] [mathematical operation]
Red hat install kernel header file
【SQL实战】一条SQL统计全国各地疫情分布情况
一个简单的代数问题的求解
Opensergo is about to release v1alpha1, which will enrich the service governance capabilities of the full link heterogeneous architecture
软件测试面试技巧
I didn't know it until I graduated -- the principle of HowNet duplication check and examples of weight reduction