当前位置:网站首页>概率论与数理统计考试重点复习路线
概率论与数理统计考试重点复习路线
2022-07-05 04:17:00 【物联黄同学】
概率论与数理统计考试重点复习路线
文章目录
前言
希望能够通过一份简单的路线,实现精准高效的备战明天的考试。话不多说,冲冲冲!
内容分为概率论与数理统计两个部分,中间的串联是第五章的大数定律和中心极限定理。
MindMap
概率论部分
数理统计部分
概率论
基本概念
这个部分的内容,我的建议是直接看我之前的blog,或者看书以及其他网课ppt之类的。
关于随机变量的分布函数我不去列举,大家可以直接通过分布律或者概率密度推导
离散型
0-1 分布
X~b§
分布律
P { X = k } = p k ( 1 − p ) 1 − k , k = 1 , 0 P\{X=k \} = p^k(1-p)^{1-k}, \qquad k = 1, 0 P{ X=k}=pk(1−p)1−k,k=1,0
X | 0 | 1 |
---|---|---|
p_k | 1-p | p |
数学期望
E ( X ) = p E(X) = p E(X)=p
方差
D ( X ) = ( 1 − p ) ⋅ p D(X) = (1-p)\cdot p D(X)=(1−p)⋅p
二项分布
X~b(n, p)
分布律
P { X = k } = p k ( 1 − p ) 1 − k P\{X=k \} = p^k(1-p)^{1-k} P{ X=k}=pk(1−p)1−k
数学期望
E ( X ) = n p E(X) = np E(X)=np
方差
D ( X ) = n ( 1 − p ) ⋅ p D(X) = n(1-p)\cdot p D(X)=n(1−p)⋅p
泊松分布
X~π(λ)
分布律
P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2... P\{X=k \} = \frac{\lambda^ke^{-\lambda}}{k!}, \qquad k=0,1,2... P{ X=k}=k!λke−λ,k=0,1,2...
泊松定理
就是用泊松去逼近二项,np=λ
lim n → ∞ C n k ( 1 − p n ) n − k = λ k e − λ k ! \lim_{n\rightarrow \infty}{C_n^k(1-p_n)^{n-k}} = \frac{\lambda^ke^{-\lambda}}{k!} n→∞limCnk(1−pn)n−k=k!λke−λ
数学期望
E ( X ) = λ E(X) = \lambda E(X)=λ
方差
D ( X ) = λ D(X) = \lambda D(X)=λ
连续型
均匀分布
X~U(a, b)
概率密度
KaTeX parse error: No such environment: align at position 26: …eft \{ \begin{̲a̲l̲i̲g̲n̲}̲ &\frac{1}{b…
期望
E ( X ) = a + b 2 E(X) = \frac {a+b}{2} E(X)=2a+b
方差
D ( X ) = ( b − a ) 2 12 D(X) = \frac{(b-a)^2}{12} D(X)=12(b−a)2
指数分布
X~E(θ)
概率密度
KaTeX parse error: No such environment: align at position 26: …eft \{ \begin{̲a̲l̲i̲g̲n̲}̲ &\frac{1}{\…
期望
E ( X ) = θ E(X) = \theta E(X)=θ
方差
D ( X ) = θ 2 D(X) = \theta^2 D(X)=θ2
正态分布
X~N(μ, σ)
概率密度
f ( x ) = 1 2 π σ e − ( x − u ) 2 2 σ 2 , − ∞ < x < ∞ f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-u)^2}{2\sigma^2}}, \qquad -\infty < x < \infty f(x)=2πσ1e−2σ2(x−u)2,−∞<x<∞
标准正态分布
X ∼ N ( 0 , 1 2 ) φ ( x ) = 1 2 π e − x 2 / 2 X\sim N(0, 1^2)\\ \varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} X∼N(0,12)φ(x)=2π1e−x2/2
期望和方差,一般情况下只要先化成标准正态分布,然后用标准的正态分布的方差和期望求解即可。
期望
E ( x ) = μ E(x) = \mu E(x)=μ
方差
D ( X ) = σ 2 D(X) = \sigma^2 D(X)=σ2
概率论部分的除了这些其实还有像随机变量函数,多维的边缘和条件以及联合,还有第四章的协方差和矩。但是这些内容我就不提了,有需要的可以看blog或者课本。
数理统计
开摆了,这个直接看吧。我要回去睡觉了。
边栏推荐
- Learning MVVM notes (1)
- Three level linkage demo of uniapp uview u-picker components
- Seven join join queries of MySQL
- EasyCVR平台出现WebRTC协议视频播放不了是什么原因?
- Use of vscode software
- NEW:Devart dotConnect ADO. NET
- 快手、抖音、视频号交战内容付费
- How does the applet solve the rendering layer network layer error?
- As soon as I write the code, President Wang talks with me about the pattern all day
- Technical tutorial: how to use easydss to push live streaming to qiniu cloud?
猜你喜欢
Interview related high-frequency algorithm test site 3
Why can't all browsers on my computer open web pages
Ctfshow web entry code audit
ActiveReportsJS 3.1 VS ActiveReportsJS 3.0
Common features of ES6
Learning notes 8
美国5G Open RAN再遭重大挫败,抗衡中国5G技术的图谋已告失败
Alibaba cloud ECS uses cloudfs4oss to mount OSS
Fuel consumption calculator
On the day 25K joined Tencent, I cried
随机推荐
Sequence diagram of single sign on Certification Center
【虚幻引擎UE】实现UE5像素流部署仅需六步操作少走弯路!(4.26和4.27原理类似)
【虚幻引擎UE】运行和启动的区别,常见问题分析
The order of LDS links
Wechat applet development process (with mind map)
Hexadecimal to octal
Fuel consumption calculator
根据入栈顺序判断出栈顺序是否合理
Looking back on 2021, looking forward to 2022 | a year between CSDN and me
American 5g open ran suffered another major setback, and its attempt to counter China's 5g technology has failed
Threejs Internet of things, 3D visualization of farm (III) model display, track controller setting, model moving along the route, model adding frame, custom style display label, click the model to obt
【虛幻引擎UE】實現UE5像素流部署僅需六步操作少走彎路!(4.26和4.27原理類似)
Threejs Internet of things, 3D visualization of farms (I)
A應用喚醒B應該快速方法
Moco is not suitable for target detection? MsrA proposes object level comparative learning target detection pre training method SOCO! Performance SOTA! (NeurIPS 2021)...
Ctfshow web entry code audit
As soon as I write the code, President Wang talks with me about the pattern all day
Network security - record web vulnerability fixes
[moteur illusoire UE] il ne faut que six étapes pour réaliser le déploiement du flux de pixels ue5 et éviter les détours! (4.26 et 4.27 principes similaires)
Threejs Internet of things, 3D visualization of factory