当前位置:网站首页>BasicVSR_ Plusplus master test videos and pictures
BasicVSR_ Plusplus master test videos and pictures
2022-07-06 22:34:00 【cv-daily】
Code :https://github.com/ckkelvinchan/BasicVSR_PlusPlus
BasicVSR_PlusPlus-master Test pictures and videos are always reported out of memory, Insufficient memory , But it needs testing , Modify the code .
modify restoration_video_demo.py
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import cv2
import mmcv
import numpy as np
import torch
from mmedit.apis import init_model, restoration_video_inference
from mmedit.core import tensor2img
from mmedit.utils import modify_args
import time
VIDEO_EXTENSIONS = ('.mp4', '.mov')
def parse_args():
modify_args()
parser = argparse.ArgumentParser(description='Restoration demo')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('input_dir', help='directory of the input video')
parser.add_argument('output_dir', help='directory of the output video')
parser.add_argument(
'--start-idx',
type=int,
default=0,
help='index corresponds to the first frame of the sequence')
parser.add_argument(
'--filename-tmpl',
default='{:08d}.png',
help='template of the file names')
parser.add_argument(
'--window-size',
type=int,
default=0,
help='window size if sliding-window framework is used')
parser.add_argument(
'--max-seq-len',
type=int,
default=None,
help='maximum sequence length if recurrent framework is used')
parser.add_argument('--device', type=int, default=0, help='CUDA device id')
args = parser.parse_args()
return args
def main():
""" Demo for video restoration models. Note that we accept video as input/output, when 'input_dir'/'output_dir' is set to the path to the video. But using videos introduces video compression, which lowers the visual quality. If you want actual quality, please save them as separate images (.png). """
args = parse_args()
model = init_model(
args.config, args.checkpoint, device=torch.device('cuda', args.device))
for i in range(10000):
start_idx=i
# time.sleep(500)
output = restoration_video_inference(model, args.input_dir,
args.window_size, start_idx,
args.filename_tmpl, args.max_seq_len)
torch.cuda.empty_cache()
time.sleep(10)
file_extension = os.path.splitext(args.output_dir)[1]
if file_extension in VIDEO_EXTENSIONS: # save as video
h, w = output.shape[-2:]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(args.output_dir, fourcc, 25, (w, h))
for i in range(0, output.size(1)):
img = tensor2img(output[:, i, :, :, :])
video_writer.write(img.astype(np.uint8))
cv2.destroyAllWindows()
video_writer.release()
else:
for i in range(args.start_idx, args.start_idx + output.size(1)):
output_i = output[:, i - args.start_idx, :, :, :]
output_i = tensor2img(output_i)
print(args.filename_tmpl.format(start_idx))
# save_path_i = f'{args.output_dir}/{args.filename_tmpl.format(i)}'
save_path_i = f'{
args.output_dir}/{
args.filename_tmpl.format(start_idx)}'
mmcv.imwrite(output_i, save_path_i)
if __name__ == '__main__':
main()
modify restoration_video_inference.py
# Copyright (c) OpenMMLab. All rights reserved.
import glob
import os.path as osp
import re
from functools import reduce
import mmcv
import numpy as np
import torch
from mmedit.datasets.pipelines import Compose
VIDEO_EXTENSIONS = ('.mp4', '.mov')
def pad_sequence(data, window_size):
padding = window_size // 2
data = torch.cat([
data[:, 1 + padding:1 + 2 * padding].flip(1), data,
data[:, -1 - 2 * padding:-1 - padding].flip(1)
],
dim=1)
return data
def restoration_video_inference(model,
img_dir,
window_size,
start_idx,
filename_tmpl,
max_seq_len=None,
):
"""Inference image with the model. Args: model (nn.Module): The loaded model. img_dir (str): Directory of the input video. window_size (int): The window size used in sliding-window framework. This value should be set according to the settings of the network. A value smaller than 0 means using recurrent framework. start_idx (int): The index corresponds to the first frame in the sequence. filename_tmpl (str): Template for file name. max_seq_len (int | None): The maximum sequence length that the model processes. If the sequence length is larger than this number, the sequence is split into multiple segments. If it is None, the entire sequence is processed at once. Returns: Tensor: The predicted restoration result. """
device = next(model.parameters()).device # model device
# build the data pipeline
if model.cfg.get('demo_pipeline', None):
test_pipeline = model.cfg.demo_pipeline
elif model.cfg.get('test_pipeline', None):
test_pipeline = model.cfg.test_pipeline
else:
test_pipeline = model.cfg.val_pipeline
print(img_dir)
# check if the input is a video
file_extension = osp.splitext(img_dir)[1]
if file_extension in VIDEO_EXTENSIONS:
video_reader = mmcv.VideoReader(img_dir)
# load the images
data = dict(lq=[], lq_path=None, key=img_dir)
for frame in video_reader:
data['lq'].append(np.flip(frame, axis=2))
# remove the data loading pipeline
tmp_pipeline = []
for pipeline in test_pipeline:
if pipeline['type'] not in [
'GenerateSegmentIndices', 'LoadImageFromFileList'
]:
tmp_pipeline.append(pipeline)
test_pipeline = tmp_pipeline
else:
# the first element in the pipeline must be 'GenerateSegmentIndices'
if test_pipeline[0]['type'] != 'GenerateSegmentIndices':
raise TypeError('The first element in the pipeline must be '
f'"GenerateSegmentIndices", but got '
f'"{
test_pipeline[0]["type"]}".')
# specify start_idx and filename_tmpl
print('start_idx', start_idx)
print('filename_tmpl', filename_tmpl)
test_pipeline[0]['start_idx'] = start_idx
test_pipeline[0]['filename_tmpl'] = filename_tmpl
# prepare data
# sequence_length = len(glob.glob(osp.join(img_dir, '*')))
sequence_length = 1
img_dir_split = re.split(r'[\\/]', img_dir)
print(img_dir)
key = img_dir_split[-1]
lq_folder = reduce(osp.join, img_dir_split[:-1])
print(lq_folder)
data = dict(
lq_path=lq_folder,
gt_path='',
key=key,
sequence_length=sequence_length)
# compose the pipeline
test_pipeline = Compose(test_pipeline)
data = test_pipeline(data)
print("data_lq",data['lq'].shape)
data = data['lq'].unsqueeze(0) # in cpu
data = data.unsqueeze(0) # in cpu
print("data",data.shape)
# forward the model
with torch.no_grad():
if window_size > 0: # sliding window framework
data = pad_sequence(data, window_size)
result = []
for i in range(0, data.size(1) - 2 * (window_size // 2)):
data_i = data[:, i:i + window_size].to(device)
result.append(model(lq=data_i, test_mode=True)['output'].cpu())
result = torch.stack(result, dim=1)
else: # recurrent framework
if max_seq_len is None:
result = model(
lq=data.to(device), test_mode=True)['output'].cpu()
else:
result = []
for i in range(0, data.size(1), max_seq_len):
result.append(
model(
lq=data[:, i:i + max_seq_len].to(device),
test_mode=True)['output'].cpu())
result = torch.cat(result, dim=1)
return result
边栏推荐
- Windows Auzre 微软的云计算产品的后台操作界面
- 手写ABA遇到的坑
- Learn the principle of database kernel from Oracle log parsing
- Typescript get function parameter type
- uniapp滑动到一定的高度后固定某个元素到顶部效果demo(整理)
- MySQL----初识MySQL
- Aardio - 封装库时批量处理属性与回调函数的方法
- POJ 1258 Agri-Net
- pytorch_YOLOX剪枝【附代码】
- Spatial domain and frequency domain image compression of images
猜你喜欢
Aardio - integrate variable values into a string of text through variable names
网络基础入门理解
Leetcode question brushing (XI) -- sequential questions brushing 51 to 55
如何用程序确认当前系统的存储模式?
Attack and defense world miscall
剪映+json解析将视频中的声音转换成文本
(18) LCD1602 experiment
Aardio - 通过变量名将变量值整合到一串文本中
NPDP认证|产品经理如何跨职能/跨团队沟通?
每日一题:力扣:225:用队列实现栈
随机推荐
What are the interface tests? What are the general test points?
【踩坑合辑】Attempting to deserialize object on CUDA device+buff/cache占用过高+pad_sequence
signed、unsigned关键字
枚举与#define 宏的区别
Lora sync word settings
金融人士必读书籍系列之六:权益投资(基于cfa考试内容大纲和框架)
UE4蓝图学习篇(四)--流程控制ForLoop和WhileLoop
使用云服务器搭建代理
MySQL教程的天花板,收藏好,慢慢看
3DMAX assign face map
做接口测试都测什么?有哪些通用测试点?
2014阿里巴巴web前实习生项目分析(1)
OpenNMS分离数据库
Chapter 4: talk about class loader again
volatile关键字
视图(view)
2014 Alibaba web pre intern project analysis (1)
自定义 swap 函数
npm无法安装sharp
Signed and unsigned keywords