当前位置:网站首页>BasicVSR_ Plusplus master test videos and pictures
BasicVSR_ Plusplus master test videos and pictures
2022-07-06 22:34:00 【cv-daily】
Code :https://github.com/ckkelvinchan/BasicVSR_PlusPlus
BasicVSR_PlusPlus-master Test pictures and videos are always reported out of memory, Insufficient memory , But it needs testing , Modify the code .
modify restoration_video_demo.py
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import cv2
import mmcv
import numpy as np
import torch
from mmedit.apis import init_model, restoration_video_inference
from mmedit.core import tensor2img
from mmedit.utils import modify_args
import time
VIDEO_EXTENSIONS = ('.mp4', '.mov')
def parse_args():
modify_args()
parser = argparse.ArgumentParser(description='Restoration demo')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('input_dir', help='directory of the input video')
parser.add_argument('output_dir', help='directory of the output video')
parser.add_argument(
'--start-idx',
type=int,
default=0,
help='index corresponds to the first frame of the sequence')
parser.add_argument(
'--filename-tmpl',
default='{:08d}.png',
help='template of the file names')
parser.add_argument(
'--window-size',
type=int,
default=0,
help='window size if sliding-window framework is used')
parser.add_argument(
'--max-seq-len',
type=int,
default=None,
help='maximum sequence length if recurrent framework is used')
parser.add_argument('--device', type=int, default=0, help='CUDA device id')
args = parser.parse_args()
return args
def main():
""" Demo for video restoration models. Note that we accept video as input/output, when 'input_dir'/'output_dir' is set to the path to the video. But using videos introduces video compression, which lowers the visual quality. If you want actual quality, please save them as separate images (.png). """
args = parse_args()
model = init_model(
args.config, args.checkpoint, device=torch.device('cuda', args.device))
for i in range(10000):
start_idx=i
# time.sleep(500)
output = restoration_video_inference(model, args.input_dir,
args.window_size, start_idx,
args.filename_tmpl, args.max_seq_len)
torch.cuda.empty_cache()
time.sleep(10)
file_extension = os.path.splitext(args.output_dir)[1]
if file_extension in VIDEO_EXTENSIONS: # save as video
h, w = output.shape[-2:]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(args.output_dir, fourcc, 25, (w, h))
for i in range(0, output.size(1)):
img = tensor2img(output[:, i, :, :, :])
video_writer.write(img.astype(np.uint8))
cv2.destroyAllWindows()
video_writer.release()
else:
for i in range(args.start_idx, args.start_idx + output.size(1)):
output_i = output[:, i - args.start_idx, :, :, :]
output_i = tensor2img(output_i)
print(args.filename_tmpl.format(start_idx))
# save_path_i = f'{args.output_dir}/{args.filename_tmpl.format(i)}'
save_path_i = f'{
args.output_dir}/{
args.filename_tmpl.format(start_idx)}'
mmcv.imwrite(output_i, save_path_i)
if __name__ == '__main__':
main()
modify restoration_video_inference.py
# Copyright (c) OpenMMLab. All rights reserved.
import glob
import os.path as osp
import re
from functools import reduce
import mmcv
import numpy as np
import torch
from mmedit.datasets.pipelines import Compose
VIDEO_EXTENSIONS = ('.mp4', '.mov')
def pad_sequence(data, window_size):
padding = window_size // 2
data = torch.cat([
data[:, 1 + padding:1 + 2 * padding].flip(1), data,
data[:, -1 - 2 * padding:-1 - padding].flip(1)
],
dim=1)
return data
def restoration_video_inference(model,
img_dir,
window_size,
start_idx,
filename_tmpl,
max_seq_len=None,
):
"""Inference image with the model. Args: model (nn.Module): The loaded model. img_dir (str): Directory of the input video. window_size (int): The window size used in sliding-window framework. This value should be set according to the settings of the network. A value smaller than 0 means using recurrent framework. start_idx (int): The index corresponds to the first frame in the sequence. filename_tmpl (str): Template for file name. max_seq_len (int | None): The maximum sequence length that the model processes. If the sequence length is larger than this number, the sequence is split into multiple segments. If it is None, the entire sequence is processed at once. Returns: Tensor: The predicted restoration result. """
device = next(model.parameters()).device # model device
# build the data pipeline
if model.cfg.get('demo_pipeline', None):
test_pipeline = model.cfg.demo_pipeline
elif model.cfg.get('test_pipeline', None):
test_pipeline = model.cfg.test_pipeline
else:
test_pipeline = model.cfg.val_pipeline
print(img_dir)
# check if the input is a video
file_extension = osp.splitext(img_dir)[1]
if file_extension in VIDEO_EXTENSIONS:
video_reader = mmcv.VideoReader(img_dir)
# load the images
data = dict(lq=[], lq_path=None, key=img_dir)
for frame in video_reader:
data['lq'].append(np.flip(frame, axis=2))
# remove the data loading pipeline
tmp_pipeline = []
for pipeline in test_pipeline:
if pipeline['type'] not in [
'GenerateSegmentIndices', 'LoadImageFromFileList'
]:
tmp_pipeline.append(pipeline)
test_pipeline = tmp_pipeline
else:
# the first element in the pipeline must be 'GenerateSegmentIndices'
if test_pipeline[0]['type'] != 'GenerateSegmentIndices':
raise TypeError('The first element in the pipeline must be '
f'"GenerateSegmentIndices", but got '
f'"{
test_pipeline[0]["type"]}".')
# specify start_idx and filename_tmpl
print('start_idx', start_idx)
print('filename_tmpl', filename_tmpl)
test_pipeline[0]['start_idx'] = start_idx
test_pipeline[0]['filename_tmpl'] = filename_tmpl
# prepare data
# sequence_length = len(glob.glob(osp.join(img_dir, '*')))
sequence_length = 1
img_dir_split = re.split(r'[\\/]', img_dir)
print(img_dir)
key = img_dir_split[-1]
lq_folder = reduce(osp.join, img_dir_split[:-1])
print(lq_folder)
data = dict(
lq_path=lq_folder,
gt_path='',
key=key,
sequence_length=sequence_length)
# compose the pipeline
test_pipeline = Compose(test_pipeline)
data = test_pipeline(data)
print("data_lq",data['lq'].shape)
data = data['lq'].unsqueeze(0) # in cpu
data = data.unsqueeze(0) # in cpu
print("data",data.shape)
# forward the model
with torch.no_grad():
if window_size > 0: # sliding window framework
data = pad_sequence(data, window_size)
result = []
for i in range(0, data.size(1) - 2 * (window_size // 2)):
data_i = data[:, i:i + window_size].to(device)
result.append(model(lq=data_i, test_mode=True)['output'].cpu())
result = torch.stack(result, dim=1)
else: # recurrent framework
if max_seq_len is None:
result = model(
lq=data.to(device), test_mode=True)['output'].cpu()
else:
result = []
for i in range(0, data.size(1), max_seq_len):
result.append(
model(
lq=data[:, i:i + max_seq_len].to(device),
test_mode=True)['output'].cpu())
result = torch.cat(result, dim=1)
return result
边栏推荐
猜你喜欢
Adavit -- dynamic network with adaptive selection of computing structure
Build op-tee development environment based on qemuv8
UE4蓝图学习篇(四)--流程控制ForLoop和WhileLoop
Aardio - 封装库时批量处理属性与回调函数的方法
Installation and use of labelimg
Should novice programmers memorize code?
Attack and defense world miscall
Crawler obtains real estate data
Learn the principle of database kernel from Oracle log parsing
【LeetCode】19、 删除链表的倒数第 N 个结点
随机推荐
const关键字
Unity3d minigame unity webgl transform plug-in converts wechat games to use dlopen, you need to use embedded 's problem
labelimg的安装与使用
软考高级(信息系统项目管理师)高频考点:项目质量管理
Build op-tee development environment based on qemuv8
[Digital IC hand tearing code] Verilog burr free clock switching circuit | topic | principle | design | simulation
POJ 1258 Agri-Net
Chapter 3: detailed explanation of class loading process (class life cycle)
Aardio - 利用customPlus库+plus构造一个多按钮组件
MySQL教程的天花板,收藏好,慢慢看
pytorch_ Yolox pruning [with code]
金融人士必读书籍系列之六:权益投资(基于cfa考试内容大纲和框架)
手写ABA遇到的坑
Heavyweight news | softing fg-200 has obtained China 3C explosion-proof certification to provide safety assurance for customers' on-site testing
自定义 swap 函数
自制J-Flash烧录工具——Qt调用jlinkARM.dll方式
Dealing with the crash of QT quick project in offscreen mode
每日一题:力扣:225:用队列实现栈
[IELTS speaking] Anna's oral learning record part1
枚举与#define 宏的区别