当前位置:网站首页>Mmdetection installation problem
Mmdetection installation problem
2022-07-02 07:34:00 【chenf0】
Question 1 :Install MMDetection Report errors
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{
cu_version}/{
torch_version}/index.html
My environment
cu_version10.1 ( Input nvcc -V command , You can find CUDA Version number .)
torch_version1.10.2
mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility
usually holds between 1.x.0 and 1.x.1. If your PyTorch version is
1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well.
https://github.com/open-mmlab/mmcv#installation
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.10.0/index.html
There is an error 

Have a look PyTorch and CUDA Version combination , It is found that there is no corresponding version , Reduce torch edition , take 1.10.2 Reduced to 1.8.1
https://github.com/open-mmlab/mmcv/blob/master/README_zh-CN.md
The whole process :
#1.Prepare environment
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
conda install pytorch=1.8.1 cudatoolkit=10.1 torchvision -c pytorch
#2.Install mmcv-full.
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html
#3.Install MMDetection.
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"
Question two fatal: unable to access…
stay git Problems encountered while downloading items :
fatal: unable to access 'https://github.com/open-mmlab/mmdetection.git/': gnutls_handshake() failed: A TLS packet with unexpected length was received.
Solution :
take https Change it to git Re execution
git clone git://github.com/open-mmlab/mmdetection.git
Question 3 :ImportError: cannot import name ‘PILLOW_VERSION’ from ‘PIL’
Method 2. According to the prompt in the last line of the error report , open function.py file , Use from PIL import Image, ImageOps, ImageEnhance, version In the replacement file from PIL import Image, ImageOps, ImageEnhance,PILLOW_VERSION This sentence .
Reference solutions :https://blog.csdn.net/Lee_lg/article/details/103901632
When cuda 11
https://pytorch.org/get-started/previous-versions/
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
Mirror image problem https://blog.csdn.net/weixin_49304494/article/details/122622134
边栏推荐
- Open failed: enoent (no such file or directory) / (operation not permitted)
- 基于pytorch的YOLOv5单张图片检测实现
- CSRF attack
- Cognitive science popularization of middle-aged people
- 华为机试题-20190417
- Two table Association of pyspark in idea2020 (field names are the same)
- @Transational踩坑
- Implement interface Iterable & lt; T>
- 软件开发模式之敏捷开发(scrum)
- Drawing mechanism of view (3)
猜你喜欢

Illustration of etcd access in kubernetes

生成模型与判别模型的区别与理解

Classloader and parental delegation mechanism

离线数仓和bi开发的实践和思考

如何高效开发一款微信小程序

深度学习分类优化实战

JSP intelligent community property management system

读《敏捷整洁之道:回归本源》后感
![[introduction to information retrieval] Chapter II vocabulary dictionary and inverted record table](/img/3f/09f040baf11ccab82f0fc7cf1e1d20.png)
[introduction to information retrieval] Chapter II vocabulary dictionary and inverted record table

sparksql数据倾斜那些事儿
随机推荐
view的绘制机制(一)
ARP attack
MySQL组合索引加不加ID
Point cloud data understanding (step 3 of pointnet Implementation)
Feeling after reading "agile and tidy way: return to origin"
Oracle 11g sysaux table space full processing and the difference between move and shrink
Huawei machine test questions
Analysis of MapReduce and yarn principles
【模型蒸馏】TinyBERT: Distilling BERT for Natural Language Understanding
传统目标检测笔记1__ Viola Jones
Conda 创建,复制,分享虚拟环境
Error in running test pyspark in idea2020
CONDA creates, replicates, and shares virtual environments
【信息检索导论】第二章 词项词典与倒排记录表
parser. parse_ Args boolean type resolves false to true
架构设计三原则
Data warehouse model fact table model design
使用Matlab实现:Jacobi、Gauss-Seidel迭代
Generate random 6-bit invitation code in PHP
[torch] the most concise logging User Guide