当前位置:网站首页>Mmdetection installation problem
Mmdetection installation problem
2022-07-02 07:34:00 【chenf0】
Question 1 :Install MMDetection Report errors
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{
cu_version}/{
torch_version}/index.html
My environment
cu_version10.1 ( Input nvcc -V command , You can find CUDA Version number .)
torch_version1.10.2
mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility
usually holds between 1.x.0 and 1.x.1. If your PyTorch version is
1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well.
https://github.com/open-mmlab/mmcv#installation
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.10.0/index.html
There is an error
Have a look PyTorch and CUDA Version combination , It is found that there is no corresponding version , Reduce torch edition , take 1.10.2 Reduced to 1.8.1
https://github.com/open-mmlab/mmcv/blob/master/README_zh-CN.md
The whole process :
#1.Prepare environment
conda create -n openmmlab python=3.7 -y
conda activate openmmlab
conda install pytorch=1.8.1 cudatoolkit=10.1 torchvision -c pytorch
#2.Install mmcv-full.
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html
#3.Install MMDetection.
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"
Question two fatal: unable to access…
stay git Problems encountered while downloading items :
fatal: unable to access 'https://github.com/open-mmlab/mmdetection.git/': gnutls_handshake() failed: A TLS packet with unexpected length was received.
Solution :
take https Change it to git Re execution
git clone git://github.com/open-mmlab/mmdetection.git
Question 3 :ImportError: cannot import name ‘PILLOW_VERSION’ from ‘PIL’
Method 2. According to the prompt in the last line of the error report , open function.py file , Use from PIL import Image, ImageOps, ImageEnhance, version In the replacement file from PIL import Image, ImageOps, ImageEnhance,PILLOW_VERSION This sentence .
Reference solutions :https://blog.csdn.net/Lee_lg/article/details/103901632
When cuda 11
https://pytorch.org/get-started/previous-versions/
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
Mirror image problem https://blog.csdn.net/weixin_49304494/article/details/122622134
边栏推荐
- 常见CNN网络创新点
- Pyspark build temporary report error
- Oracle RMAN semi automatic recovery script restore phase
- SSM garbage classification management system
- Huawei machine test questions
- Oracle APEX 21.2 installation et déploiement en une seule touche
- SSM二手交易网站
- 优化方法:常用数学符号的含义
- Oracle 11g sysaux table space full processing and the difference between move and shrink
- 【信息检索导论】第一章 布尔检索
猜你喜欢
基于pytorch的YOLOv5单张图片检测实现
【MEDICAL】Attend to Medical Ontologies: Content Selection for Clinical Abstractive Summarization
MySQL has no collation factor of order by
Feeling after reading "agile and tidy way: return to origin"
读《敏捷整洁之道:回归本源》后感
软件开发模式之敏捷开发(scrum)
Oracle EBs and apex integrated login and principle analysis
Interpretation of ernie1.0 and ernie2.0 papers
【深度学习系列(八)】:Transoform原理及实战之原理篇
【调参Tricks】WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach
随机推荐
[torch] some ideas to solve the problem that the tensor parameters have gradients and the weight is not updated
聊天中文语料库对比(附上各资源链接)
Play online games with mame32k
[Bert, gpt+kg research] collection of papers on the integration of Pretrain model with knowledge
矩阵的Jordan分解实例
win10+vs2017+denseflow编译
【Ranking】Pre-trained Language Model based Ranking in Baidu Search
Data warehouse model fact table model design
【信息检索导论】第一章 布尔检索
SSM学生成绩信息管理系统
SSM二手交易网站
Jordan decomposition example of matrix
使用Matlab实现:幂法、反幂法(原点位移)
[model distillation] tinybert: distilling Bert for natural language understanding
How to efficiently develop a wechat applet
【Torch】解决tensor参数有梯度,weight不更新的若干思路
使用Matlab实现:弦截法、二分法、CG法,求零点、解方程
腾讯机试题
[paper introduction] r-drop: regulated dropout for neural networks
Cognitive science popularization of middle-aged people