当前位置:网站首页>[the Nine Yang Manual] 2016 Fudan University Applied Statistics real problem + analysis
[the Nine Yang Manual] 2016 Fudan University Applied Statistics real problem + analysis
2022-07-06 13:30:00 【Elder martial brother statistics】
Catalog
The real part
One 、(15 branch ) Three people decipher the code independently at the same time , And the probability that three people can decipher the password is 1/5, 1/3 and 1/4, Find the probability that this password can be decoded .
Two 、(15 branch ) from (0,1) Take two numbers randomly in , Find that the product is not less than 3/16 And its sum is not greater than 1 Probability .
3、 ... and 、(15 branch ) X ∼ N ( 0 , 1 ) , X \sim N(0,1), X∼N(0,1), seek Y = X 2 Y=X^{2} Y=X2 Density function of .
Four 、(30 branch ) remember (0,1),(1,0),(0,0) The area enclosed by three points is D , ( X , Y ) D,(X, Y) D,(X,Y) obey D D D Even distribution on , seek
(1)(15 branch ) E ( X + Y ) , Var ( X + Y ) E(X+Y), \operatorname{Var}(X+Y) E(X+Y),Var(X+Y);
(2)(15 branch ) X , Y X, Y X,Y The correlation coefficient of .
5、 ... and 、(15 branch ) For two random variables with only two values X , Y , X, Y, X,Y, Try to prove X , Y X, Y X,Y Independent if and only if X , Y X, Y X,Y Unrelated .
6、 ... and 、(15 branch ) Set from the overall X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) X∼N(μ,σ2) Of 2 n 2 n 2n Random sample , Try to expect
E ( ∑ i = 1 n ( X i + X n + i − 2 X ˉ ) 2 ) . E\left(\sum_{i=1}^{n}\left(X_{i}+X_{n+i}-2 \bar{X}\right)^{2}\right). E(i=1∑n(Xi+Xn+i−2Xˉ)2).
7、 ... and 、(15 branch ) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3 yes i.i.d. To obey U ( 0 , 1 ) U(0,1) U(0,1) Random variable of , Find order statistics X ( 1 ) X_{(1)} X(1) Distribution function and expectation of .
8、 ... and 、(30 branch ) From X ∼ f ( x ) = { θ , 0 ≤ x < 1 1 − θ , 1 ≤ x < 2 , 0 , otherwise X \sim f(x)=\left\{\begin{array}{cl}\theta, & 0 \leq x<1 \\ 1-\theta, & 1 \leq x<2, \\ 0, & \text { otherwise }\end{array}\right. X∼f(x)=⎩⎨⎧θ,1−θ,0,0≤x<11≤x<2, otherwise Of n n n A simple random sample , seek
(1)(15 branch ) θ \theta θ The moment estimate of ;
(2)(15 branch ) θ \theta θ Maximum likelihood estimation of , It is known that m = ∑ i = 1 n I [ X i < 1 ] m=\sum_{i=1}^{n} I\left[X_{i}<1\right] m=∑i=1nI[Xi<1].
The analysis part
One 、(15 branch ) Three people decipher the code independently at the same time , And the probability that three people can decipher the password is 1/5, 1/3 and 1/4, Find the probability that this password can be decoded .
Solution: According to de Morgan formula , P { At least one person decoded } = 1 − P { No one decoded } = 1 − 4 5 × 2 3 × 3 4 = 0.6. \begin{aligned} P\{\text { At least one person decoded }\} &=1-P\{\text { No one decoded }\} \\ &=1-\frac{4}{5} \times \frac{2}{3} \times \frac{3}{4}=0.6 . \end{aligned} P{ At least one person decoded }=1−P{ No one decoded }=1−54×32×43=0.6.
Two 、(15 branch ) from (0,1) Take two numbers randomly in , Find that the product is not less than 3/16 And its sum is not greater than 1 Probability .
Solution: Let the two numbers obtained be X , Y ∼ U ( 0 , 1 ) X, Y \sim U(0,1) X,Y∼U(0,1), Its product is not less than 3 16 \frac{3}{16} 163 signify X Y ≥ 3 16 X Y \geq \frac{3}{16} XY≥163, Its sum is not greater than 1 signify X + Y ≤ 1 X+Y \leq 1 X+Y≤1.
Make D = { ( x , y ) : x y ≥ 3 16 , x + y ≤ 1 } ∩ ( 0 , 1 ) 2 D=\left\{(x, y): x y \geq \frac{3}{16}, x+y \leq 1\right\} \cap(0,1)^{2} D={ (x,y):xy≥163,x+y≤1}∩(0,1)2, The probability is ∫ D f ( x , y ) d x d y = 1 8 − ∫ 1 4 3 4 ∫ 1 4 3 16 x d y d x = 1 8 − ∫ 1 4 3 4 ( 3 16 x − 1 4 ) d x = 1 4 − 3 ln 3 16 \int_{D} f(x, y) d x d y=\frac{1}{8}-\int_{\frac{1}{4}}^{\frac{3}{4}} \int_{\frac{1}{4}}^{\frac{3}{16 x}} d y d x=\frac{1}{8}-\int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{3}{16 x}-\frac{1}{4}\right) d x=\frac{1}{4}-\frac{3 \ln 3}{16} ∫Df(x,y)dxdy=81−∫4143∫4116x3dydx=81−∫4143(16x3−41)dx=41−163ln3
3、 ... and 、(15 branch ) X ∼ N ( 0 , 1 ) , X \sim N(0,1), X∼N(0,1), seek Y = X 2 Y=X^{2} Y=X2 Density function of .
Solution: When y ≥ 0 y \geq 0 y≥0 when ,
F ( y ) = P { Y ≤ y } = P { X 2 ≤ > y } = P { − y ≤ X ≤ y } = 2 Φ ( y ) − 1 F(y)=P\{Y \leq y\}=P\left\{X^{2} \leq>y\right\}=P\{-\sqrt{y} \leq X \leq \sqrt{y}\}=2 \Phi(\sqrt{y})-1 F(y)=P{ Y≤y}=P{ X2≤>y}=P{ −y≤X≤y}=2Φ(y)−1, so
f Y ( y ) = F ′ ( y ) = 2 φ ( y ) ⋅ 1 2 y = 1 2 π y e − y 2 , y ≥ 0 f_{Y}(y)=F^{\prime}(y)=2 \varphi(\sqrt{y}) \cdot \frac{1}{2 \sqrt{y}}=\frac{1}{\sqrt{2 \pi y}} e^{-\frac{y}{2}}, y \geq 0 fY(y)=F′(y)=2φ(y)⋅2y1=2πy1e−2y,y≥0
Four 、(30 branch ) remember (0,1),(1,0),(0,0) The area enclosed by three points is D , ( X , Y ) D,(X, Y) D,(X,Y) obey D D D Even distribution on , seek
(1)(15 branch ) E ( X + Y ) , Var ( X + Y ) E(X+Y), \operatorname{Var}(X+Y) E(X+Y),Var(X+Y);
(2)(15 branch ) X , Y X, Y X,Y The correlation coefficient of .
Solution: (1) E ( X + Y ) = 2 ∫ 0 1 ∫ 0 1 − y ( x + y ) d x d y = ∫ 0 1 ( 1 − y 2 ) d y = 1 − 1 3 = 2 3 E(X+Y)=2 \int_{0}^{1} \int_{0}^{1-y}(x+y) d x d y=\int_{0}^{1}\left(1-y^{2}\right) d y=1-\frac{1}{3}=\frac{2}{3} E(X+Y)=2∫01∫01−y(x+y)dxdy=∫01(1−y2)dy=1−31=32, E ( X + Y ) 2 = 2 ∫ 0 1 ∫ 0 1 − y ( x + y ) 2 d x d y = 2 3 ∫ 0 1 ( 1 − y 3 ) d y = 2 3 ( 1 − 1 4 ) = 1 2 , E(X+Y)^{2}=2 \int_{0}^{1} \int_{0}^{1-y}(x+y)^{2} d x d y=\frac{2}{3} \int_{0}^{1}\left(1-y^{3}\right) d y=\frac{2}{3}\left(1-\frac{1}{4}\right)=\frac{1}{2}, E(X+Y)2=2∫01∫01−y(x+y)2dxdy=32∫01(1−y3)dy=32(1−41)=21, therefore
Var ( X + Y ) = 1 2 − 4 9 = 1 18 . \operatorname{Var}(X+Y)=\frac{1}{2}-\frac{4}{9}=\frac{1}{18}. Var(X+Y)=21−94=181.(2) E X Y = 2 ∫ 0 1 ∫ 0 1 − y x y d x d y = ∫ 0 1 ( y 3 − 2 y 2 + y ) d y = 1 4 − 2 3 + 1 2 = 1 12 E X Y=2 \int_{0}^{1} \int_{0}^{1-y} x y d x d y=\int_{0}^{1}\left(y^{3}-2 y^{2}+y\right) d y=\frac{1}{4}-\frac{2}{3}+\frac{1}{2}=\frac{1}{12} EXY=2∫01∫01−yxydxdy=∫01(y3−2y2+y)dy=41−32+21=121, E X = E Y = 2 ∫ 0 1 ∫ 0 1 − y x d x d y = ∫ 0 1 ( y 2 − 2 y + 1 ) d y = 1 3 − 1 + 1 = 1 3 , E X=E Y=2 \int_{0}^{1} \int_{0}^{1-y} x d x d y=\int_{0}^{1}\left(y^{2}-2 y+1\right) d y=\frac{1}{3}-1+1=\frac{1}{3}, EX=EY=2∫01∫01−yxdxdy=∫01(y2−2y+1)dy=31−1+1=31, so
Cov ( X , Y ) = 1 12 − 1 9 = − 1 36 . \operatorname{Cov}(X, Y)=\frac{1}{12}-\frac{1}{9}=-\frac{1}{36}. Cov(X,Y)=121−91=−361. E X 2 = 2 ∫ 0 1 ∫ 0 1 − y x 2 d x d y = 2 3 ∫ 0 1 ( 1 − y ) 3 d y = 1 6 , E X^{2}=2 \int_{0}^{1} \int_{0}^{1-y} x^{2} d x d y=\frac{2}{3}\int_{0}^{1}(1-y)^{3} d y=\frac{1}{6}, EX2=2∫01∫01−yx2dxdy=32∫01(1−y)3dy=61, so Var ( X ) = Var ( Y ) = 1 6 − 1 9 = 1 18 , \operatorname{Var}(X)=\operatorname{Var}(Y)=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}, Var(X)=Var(Y)=61−91=181, And then there are ρ X Y = − 1 2 \rho_{X Y}=-\frac{1}{2} ρXY=−21.
5、 ... and 、(15 branch ) For two random variables with only two values X , Y , X, Y, X,Y, Try to prove X , Y X, Y X,Y Independent if and only if X , Y X, Y X,Y Unrelated .
Solution:
X = x 1 X=x_{1} X=x1 | X = x 2 X=x_{2} X=x2 | ||
---|---|---|---|
Y = y 1 Y=y_{1} Y=y1 | p 11 p_{11} p11 | p 21 p_{21} p21 | 1 − q 1-q 1−q |
Y = y 2 Y=y_{2} Y=y2 | p 12 p_{12} p12 | p 22 p_{22} p22 | q q q |
1 − p 1-p 1−p | p p p |
Solution: Independence must not be relevant , Just prove the sufficiency . Just discuss X ′ = X − x 1 x 2 − x 1 X'=\frac{X-x_1}{x_2-x_1} X′=x2−x1X−x1, Y ′ = Y − y 1 y 2 − y 1 Y'=\frac{Y-y_1}{y_2-y_1} Y′=y2−y1Y−y1, X , Y X,Y X,Y Irrelevant and X ′ , Y ′ X',Y' X′,Y′ Irrelevance is equivalent . When X ′ , Y ′ X',Y' X′,Y′ When it's not relevant , explain p 22 = E ( X ′ Y ′ ) = E ( X ′ ) E ( Y ′ ) = p q , p_{22}=E(X'Y')=E(X')E(Y')=pq, p22=E(X′Y′)=E(X′)E(Y′)=pq, Further, there are p 21 = p − p 22 = p − p q = p ( 1 − q ) , p_{21}=p-p_{22}=p-pq=p(1-q), p21=p−p22=p−pq=p(1−q), p 12 = q − p 22 = q − p q = q ( 1 − p ) , p_{12}=q-p_{22}=q-pq=q(1-p), p12=q−p22=q−pq=q(1−p), p 11 = 1 − p − p 12 = ( 1 − p ) − q ( 1 − p ) = ( 1 − p ) ( 1 − q ) . p_{11}=1-p-p_{12}=(1-p)-q(1-p)=(1-p)(1-q). p11=1−p−p12=(1−p)−q(1−p)=(1−p)(1−q). therefore X ′ , Y ′ X',Y' X′,Y′ Independent , so X , Y X,Y X,Y Also independent .
6、 ... and 、(15 branch ) Set from the overall X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^{2}\right) X∼N(μ,σ2) Of 2 n 2 n 2n Random sample , Try to expect
E ( ∑ i = 1 n ( X i + X n + i − 2 X ˉ ) 2 ) . E\left(\sum_{i=1}^{n}\left(X_{i}+X_{n+i}-2 \bar{X}\right)^{2}\right). E(i=1∑n(Xi+Xn+i−2Xˉ)2).
Solution: remember Y i = X i + X n + i , i = 1 , 2 , … , n Y_{i}=X_{i}+X_{n+i}, i=1,2, \ldots, n Yi=Xi+Xn+i,i=1,2,…,n, such Y 1 , Y 2 , … , Y n Y_{1}, Y_{2}, \ldots, Y_{n} Y1,Y2,…,Yn It comes from the whole N ( 2 μ , 2 σ 2 ) N\left(2 \mu, 2 \sigma^{2}\right) N(2μ,2σ2) Of n n n Random sample , Y ˉ = 2 X ˉ \bar{Y}=2 \bar{X} Yˉ=2Xˉ, According to the definition and nature of sample variance , We have 1 2 σ 2 ∑ i = 1 n ( X i + X n + i − 2 X ˉ ) 2 = 1 2 σ 2 ∑ i = 1 n ( Y i − Y ˉ ) 2 ∼ χ 2 ( n − 1 ) \frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(X_{i}+X_{n+i}-2 \bar{X}\right)^{2}=\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} \sim \chi^{2}(n-1) 2σ21i=1∑n(Xi+Xn+i−2Xˉ)2=2σ21i=1∑n(Yi−Yˉ)2∼χ2(n−1) therefore
E ∑ i = 1 n ( X i + X n + i − 2 X ˉ ) 2 = 2 ( n − 1 ) σ 2 . E \sum_{i=1}^{n}\left(X_{i}+X_{n+i}-2 \bar{X}\right)^{2}=2(n-1)\sigma^{2}. Ei=1∑n(Xi+Xn+i−2Xˉ)2=2(n−1)σ2.
7、 ... and 、(15 branch ) X 1 , X 2 , X 3 X_{1}, X_{2}, X_{3} X1,X2,X3, yes i.i.d. To obey U ( 0 , 1 ) U(0,1) U(0,1) Random variable of , Find order statistics X ( 1 ) X_{(1)} X(1) Distribution function and expectation of .
Solution: set up Y = X ( 1 ) Y=X_{(1)} Y=X(1), When y ∈ ( 0 , 1 ) y \in(0,1) y∈(0,1) when , P { Y ≥ y } = P ( min { X 1 , X 2 , X 3 } ≥ y ) = P 3 { X 1 ≥ y } = ( 1 − y ) 3 P\{Y \geq y\}=P\left(\min \left\{X_{1}, X_{2}, X_{3}\right\} \geq y\right)=P^{3}\left\{X_{1} \geq y\right\}=(1-y)^{3} P{ Y≥y}=P(min{ X1,X2,X3}≥y)=P3{ X1≥y}=(1−y)3 So the distribution function is
F ( y ) = { 0 , y < 0 , 1 − ( 1 − y ) 3 , 0 ≤ y < 1 , 1 , y ≥ 1. F(y)=\left\{\begin{array}{lc}0, & y<0, \\ 1-(1-y)^{3}, & 0 \leq y<1, \\ 1, & y \geq 1 .\end{array}\right. F(y)=⎩⎨⎧0,1−(1−y)3,1,y<0,0≤y<1,y≥1. This happens to be Beta ( 1 , 3 ) \operatorname{Beta}(1,3) Beta(1,3) Distribution function of . E Y = ∫ 0 1 y d F ( y ) = 1 ⋅ F ( 1 ) − ∫ 0 1 [ 1 − ( 1 − y ) 3 ] d y = 1 4 E Y=\int_{0}^{1} y d F(y)=1 \cdot F(1)-\int_{0}^{1}\left[1-(1-y)^{3}\right] d y=\frac{1}{4} EY=∫01ydF(y)=1⋅F(1)−∫01[1−(1−y)3]dy=41
8、 ... and 、(30 branch ) From X ∼ f ( x ) = { θ , 0 ≤ x < 1 1 − θ , 1 ≤ x < 2 , 0 , otherwise X \sim f(x)=\left\{\begin{array}{cl}\theta, & 0 \leq x<1 \\ 1-\theta, & 1 \leq x<2, \\ 0, & \text { otherwise }\end{array}\right. X∼f(x)=⎩⎨⎧θ,1−θ,0,0≤x<11≤x<2, otherwise Of n n n A simple random sample , seek
(1)(15 branch ) θ \theta θ The moment estimate of ;
(2)(15 branch ) θ \theta θ Maximum likelihood estimation of , It is known that m = ∑ i = 1 n I [ X i < 1 ] m=\sum_{i=1}^{n} I\left[X_{i}<1\right] m=∑i=1nI[Xi<1].
Solution: (1) E X = ∫ 0 1 x θ d x + ∫ 1 2 x ( 1 − θ ) d x = 3 2 − θ E X=\int_{0}^{1} x \theta d x+\int_{1}^{2} x(1-\theta) d x=\frac{3}{2}-\theta EX=∫01xθdx+∫12x(1−θ)dx=23−θ, therefore θ ^ 1 = 3 2 − X ˉ . \hat{\theta}_{1}=\frac{3}{2}-\bar{X}. θ^1=23−Xˉ.(2) Likelihood function L ( x 1 , … , x n ; θ ) = θ m ( 1 − θ ) n − m , L\left(x_{1}, \ldots, x_{n} ; \theta\right)=\theta^{m}(1-\theta)^{n-m}, L(x1,…,xn;θ)=θm(1−θ)n−m,
ln L = m ln θ + ( n − m ) ln ( 1 − θ ) \ln L=m \ln \theta+(n-m) \ln(1-\theta) lnL=mlnθ+(n−m)ln(1−θ), Yes θ \theta θ Finding partial derivatives , have to ∂ ln L ∂ θ = m θ − n − m 1 − θ = l e t 0 , \frac{\partial \ln L}{\partial \theta}=\frac{m}{\theta}-\frac{n-m}{1-\theta} \stackrel{l e t}{=} 0, ∂θ∂lnL=θm−1−θn−m=let0, Solution θ ^ 2 = m n \hat{\theta}_{2}=\frac{m}{n} θ^2=nm.
边栏推荐
- CorelDRAW plug-in -- GMS plug-in development -- Introduction to VBA -- GMS plug-in installation -- Security -- macro Manager -- CDR plug-in (I)
- TYUT太原理工大学2022数据库之关系代数小题
- vector
- 1.初识C语言(1)
- 最新坦克大战2022-全程开发笔记-2
- MPLS experiment
- Abstract classes and interfaces
- (超详细onenet TCP协议接入)arduino+esp8266-01s接入物联网平台,上传实时采集数据/TCP透传(以及lua脚本如何获取和编写)
- Redis的两种持久化机制RDB和AOF的原理和优缺点
- 6. Function recursion
猜你喜欢
TYUT太原理工大学2022数据库大题之数据库操作
20220211-CTF-MISC-006-pure_ Color (use of stegsolve tool) -007 Aesop_ Secret (AES decryption)
Application architecture of large live broadcast platform
3.猜数字游戏
3.C语言用代数余子式计算行列式
3. C language uses algebraic cofactor to calculate determinant
TYUT太原理工大学2022“mao gai”必背
继承和多态(上)
1.初识C语言(1)
4.分支语句和循环语句
随机推荐
Summary of multiple choice questions in the 2022 database of tyut Taiyuan University of Technology
Service ability of Hongmeng harmonyos learning notes to realize cross end communication
3.输入和输出函数(printf、scanf、getchar和putchar)
8. C language - bit operator and displacement operator
View UI plus released version 1.3.1 to enhance the experience of typescript
MySQL limit x, -1 doesn't work, -1 does not work, and an error is reported
(超详细二)onenet数据可视化详解,如何用截取数据流绘图
Inheritance and polymorphism (I)
ROS machine voice
The latest tank battle 2022 full development notes-1
[中国近代史] 第六章测验
Set container
学编程的八大电脑操作,总有一款你不会
1. C language matrix addition and subtraction method
TYUT太原理工大学2022数据库之关系代数小题
There is always one of the eight computer operations that you can't learn programming
初识指针笔记
4. Binary search
3. C language uses algebraic cofactor to calculate determinant
Mortal immortal cultivation pointer-2