当前位置:网站首页>2022-07-05 use TPCC to conduct sub query test on stonedb
2022-07-05 use TPCC to conduct sub query test on stonedb
2022-07-06 22:27:00 【Emperor Zunwu world】
Catalog
3、 ... and . Import the table structure of the modified engine :
5、 ... and . Perform the test :
contrast mysql Of innodb engine :
Abstract :
Record the use of tpcc Yes stonedb Conduct pressure measurement process
tpcc:
One . compile
git clone https://github.com/Percona-Lab/tpcc-mysql.git
cd tpcc-mysql/src
make
cd ..
# Because we are testing STONEDB engine , So it needs to be modified create_table.sql The table structure engine inside is Atomstore
vim create_table.sql
:%s/InnoDB/STONEDB/g
Two . establish tpcc library
mysql -e “create database tpcc”3、 ... and . Import the table structure of the modified engine :
mysql tpcc < create_table.sqlFour . Import data
ln -s /stonedb56/install/tmp/mysql.sock /var/lib/mysql/mysql.sock./tpcc_load -h localhost -d tpcc -u root -P 3306 -w 105、 ... and . Perform the test :
./tpcc_start -h localhost -d tpcc -u root -P 3306 -w 10 -c32 -r10 -l606、 ... and . Test data :
MEASURING START.
10, trx: 0, 95%: 0.000, 99%: 0.000, max_rt: 0.000, 0|0.000, 0|0.000, 0|0.000, 0|0.000
20, trx: 0, 95%: 0.000, 99%: 0.000, max_rt: 0.000, 0|0.000, 0|0.000, 0|0.000, 0|0.000
30, trx: 0, 95%: 0.000, 99%: 0.000, max_rt: 0.000, 0|0.000, 0|0.000, 0|0.000, 0|0.000
40, trx: 0, 95%: 0.000, 99%: 0.000, max_rt: 0.000, 0|0.000, 0|0.000, 0|0.000, 0|0.000
50, trx: 0, 95%: 0.000, 99%: 0.000, max_rt: 0.000, 0|0.000, 0|0.000, 0|0.000, 0|0.000
60, trx: 0, 95%: 0.000, 99%: 0.000, max_rt: 0.000, 0|0.000, 0|0.000, 0|0.000, 0|0.000
STOPPING THREADS
<Raw Results>
[0] sc:0 lt:0 rt:0 fl:0 avg_rt: -nan (5)
[1] sc:0 lt:0 rt:0 fl:0 avg_rt: -nan (5)
[2] sc:0 lt:0 rt:0 fl:0 avg_rt: -nan (5)
[3] sc:0 lt:0 rt:0 fl:0 avg_rt: -nan (80)
[4] sc:0 lt:0 rt:0 fl:0 avg_rt: -nan (20)
in 60 sec.
<Raw Results2(sum ver.)>
[0] sc:0 lt:0 rt:0 fl:0
[1] sc:0 lt:0 rt:0 fl:0
[2] sc:0 lt:0 rt:0 fl:0
[3] sc:0 lt:0 rt:0 fl:0
[4] sc:0 lt:0 rt:0 fl:0
<Constraint Check> (all must be [OK])
[transaction percentage]
Payment: -nan% (>=43.0%) [NG] *
Order-Status: -nan% (>= 4.0%) [NG] *
Delivery: -nan% (>= 4.0%) [NG] *
Stock-Level: -nan% (>= 4.0%) [NG] *
[response time (at least 90% passed)]
New-Order: -nan% [NG] *
Payment: -nan% [NG] *
Order-Status: -nan% [NG] *
Delivery: -nan% [NG] *
Stock-Level: -nan% [NG] *
<TpmC>
0.000 TpmC
Subquery :
Query statement :
select
o_carrier_id,
count(*) as order_count
from
orders
where
o_entry_d >= date '1993-07-01'
and o_entry_d < date '2022-07-06' + interval '3' month
and exists (
select
*
from
item
where
i_name = i_data
or i_id > i_price
)
group by
o_carrier_id
order by
o_carrier_id;stonedb Execution results :
mysql> select
-> o_carrier_id,
-> count(*) as order_count
-> from
-> orders
-> where
-> o_entry_d >= date '1993-07-01'
-> and o_entry_d < date '2022-07-06' + interval '3' month
-> and exists (
-> select
-> *
-> from
-> item
-> where
-> i_name = i_data
-> or i_id > i_price
-> )
-> group by
-> o_carrier_id
-> order by
-> o_carrier_id;
+--------------+-------------+
| o_carrier_id | order_count |
+--------------+-------------+
| NULL | 90000 |
| 1 | 21113 |
| 2 | 20850 |
| 3 | 20965 |
| 4 | 20854 |
| 5 | 21050 |
| 6 | 21123 |
| 7 | 21028 |
| 8 | 21062 |
| 9 | 21015 |
| 10 | 20940 |
+--------------+-------------+
11 rows in set (0.26 sec)
mysql> explain select
-> o_carrier_id,
-> count(*) as order_count
-> from
-> orders
-> where
-> o_entry_d >= date '1993-07-01'
-> and o_entry_d < date '2022-07-06' + interval '3' month
-> and exists (
-> select
-> *
-> from
-> item
-> where
-> i_name = i_data
-> or i_id > i_price
-> )
-> group by
-> o_carrier_id
-> order by
-> o_carrier_id \G
*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: NULL
type: NULL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: NULL
Extra: Impossible WHERE
*************************** 2. row ***************************
id: 2
select_type: SUBQUERY
table: item
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 100000
Extra: Using where with pushed condition (t0) Pckrows: 2, susp. 2 (0 empty 0 full). Conditions: 1
2 rows in set (0.00 sec)
contrast mysql Of innodb engine :
mysql edition :
[[email protected] ~]# mysqld --version
/usr/libexec/mysqld Ver 8.0.26 for Linux on x86_64 (Source distribution)
data :
mysql> select
-> o_carrier_id,
-> count(*) as order_count
-> from
-> orders
-> where
-> o_entry_d >= date '1993-07-01'
-> and o_entry_d < date '2022-07-06' + interval '3' month
-> and exists (
-> select
-> *
-> from
-> item
-> where
-> i_name = i_data
-> or i_id > i_price
-> )
-> group by
-> o_carrier_id
-> order by
-> o_carrier_id;
+--------------+-------------+
| o_carrier_id | order_count |
+--------------+-------------+
| NULL | 90000 |
| 1 | 21218 |
| 2 | 20976 |
| 3 | 20727 |
| 4 | 21098 |
| 5 | 21084 |
| 6 | 20878 |
| 7 | 21114 |
| 8 | 20800 |
| 9 | 21265 |
| 10 | 20840 |
+--------------+-------------+
11 rows in set (0.11 sec)
mysql> explain select
-> o_carrier_id,
-> count(*) as order_count
-> from
-> orders
-> where
-> o_entry_d >= date '1993-07-01'
-> and o_entry_d < date '2022-07-06' + interval '3' month
-> and exists (
-> select
-> *
-> from
-> item
-> where
-> i_name = i_data
-> or i_id > i_price
-> )
-> group by
-> o_carrier_id
-> order by
-> o_carrier_id \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: item
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 92192
filtered: 40.00
Extra: Using where; Using temporary; Using filesort; FirstMatch
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: orders
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 271048
filtered: 11.11
Extra: Using where; Using join buffer (hash join)
2 rows in set, 1 warning (0.00 sec)
边栏推荐
猜你喜欢

2021 geometry deep learning master Michael Bronstein long article analysis

C # réalise la liaison des données du rapport Crystal et l'impression du Code à barres 4

Management background --5, sub classification
Learn the principle of database kernel from Oracle log parsing
The SQL response is slow. What are your troubleshooting ideas?

2022-07-04 mysql的高性能数据库引擎stonedb在centos7.9编译及运行

0 basic learning C language - interrupt

Senior soft test (Information System Project Manager) high frequency test site: project quality management

signed、unsigned关键字

HDR image reconstruction from a single exposure using deep CNN reading notes
随机推荐
GD32F4XX串口接收中断和闲时中断配置
signed、unsigned关键字
Gd32f4xx serial port receive interrupt and idle interrupt configuration
【sdx62】WCN685X将bdwlan.bin和bdwlan.txt相互转化操作方法
中国VOCs催化剂行业研究与投资战略报告(2022版)
0 basic learning C language - interrupt
The SQL response is slow. What are your troubleshooting ideas?
Anaconda installs third-party packages
Solve project cross domain problems
2500 common Chinese characters + 130 common Chinese and English characters
Installation and use of labelimg
const关键字
i. Mx6ull build boa server details and some of the problems encountered
Spatial domain and frequency domain image compression of images
LeetCode刷题(十一)——顺序刷题51至55
Shortcut keys in the terminal
(18) LCD1602 experiment
小程序系统更新提示,并强制小程序重启并使用新版本
C#实现水晶报表绑定数据并实现打印4-条形码
2022年6月国产数据库大事记-墨天轮