当前位置:网站首页>Pytorch four commonly used optimizer tests
Pytorch four commonly used optimizer tests
2022-07-06 11:59:00 【Want to be a kite】
PyTorch Four common optimizer tests SGD、SGD(Momentum)、RMSprop、Adam
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
# Hyperparameters
LR =0.001
Batch_Size = 32
Epochs = 12
# Generate training data
x = torch.unsqueeze(torch.linspace(-1,1,1000),dim=1)
y = x.pow(2) + 0.1 * torch.normal(torch.zeros(*x.size()))
torch_dataset = Data.TensorDataset(x,y)
loader = Data.DataLoader(dataset=torch_dataset,batch_size=Batch_Size,shuffle=True)
class Net2(torch.nn.Module):
def __init__(self):
super(Net2,self).__init__()
self.hidden = torch.nn.Linear(1,20)
self.predict = torch.nn.Linear(20,1)
# Forward pass
def forward(self,x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net_SGD = Net2()
net_Momentum =Net2()
net_RMSprop = Net2()
net_Adam = Net2()
nets = [net_SGD,net_Momentum,net_RMSprop,net_Adam]
opt_SGD = torch.optim.SGD(net_SGD.parameters(),lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(),lr=LR,momentum=0.9)
opt_RMSProp = torch.optim.RMSprop(net_RMSprop.parameters(),lr=LR,alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(),lr=LR,betas=(0.9,0.99))
optimizers = [opt_SGD,opt_Momentum,opt_RMSProp,opt_Adam]
loss_func = torch.nn.MSELoss()
loss_his = [[],[],[],[]]
for epoch in range(Epochs):
for step,(batch_x,batch_y) in enumerate(loader):
for net,opt,l_his in zip(nets,optimizers,loss_his):
output = net(batch_x)
loss = loss_func(output,batch_y)
opt.zero_grad()
loss.backward()
opt.step()
l_his.append(loss.data.numpy()) #loss recoder
labels = ['SGD','Momentum','RMsprop','Adam']
for i ,l_his in enumerate(loss_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()

边栏推荐
- TypeScript
- Comparison of solutions of Qualcomm & MTK & Kirin mobile platform USB3.0
- Detailed explanation of Union [C language]
- 共用体(union)详解【C语言】
- Using LinkedHashMap to realize the caching of an LRU algorithm
- Linux yum安装MySQL
- GNN的第一个简单案例:Cora分类
- [NPUCTF2020]ReadlezPHP
- STM32型号与Contex m对应关系
- Wangeditor rich text reference and table usage
猜你喜欢

Mysql database interview questions

【flink】flink学习

Reno7 60W super flash charging architecture

Kaggle竞赛-Two Sigma Connect: Rental Listing Inquiries(XGBoost)

MongoDB

数据分析之缺失值填充(重点讲解多重插值法Miceforest)

【yarn】Yarn container 日志清理

arduino JSON数据信息解析
![[yarn] CDP cluster yarn configuration capacity scheduler batch allocation](/img/85/0121478f8fc427d1200c5f060d5255.png)
[yarn] CDP cluster yarn configuration capacity scheduler batch allocation

PyTorch四种常用优化器测试
随机推荐
[BSidesCF_2020]Had_ a_ bad_ day
MATLAB学习和实战 随手记
imgcat使用心得
Encodermappreduce notes
JS object and event learning notes
【yarn】Yarn container 日志清理
There are three iPhone se 2022 models in the Eurasian Economic Commission database
PyTorch四种常用优化器测试
E-commerce data analysis -- User Behavior Analysis
ESP8266通过arduino IED连接巴法云(TCP创客云)
OSPF message details - LSA overview
冒泡排序【C语言】
C语言,log打印文件名、函数名、行号、日期时间
Reno7 60W超级闪充充电架构
分布式节点免密登录
Machine learning -- linear regression (sklearn)
Correspondence between STM32 model and contex M
Dependency in dependencymanagement cannot be downloaded and red is reported
关键字 inline (内联函数)用法解析【C语言】
常用正则表达式整理