当前位置:网站首页>Pytorch four commonly used optimizer tests
Pytorch four commonly used optimizer tests
2022-07-06 11:59:00 【Want to be a kite】
PyTorch Four common optimizer tests SGD、SGD(Momentum)、RMSprop、Adam
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
# Hyperparameters
LR =0.001
Batch_Size = 32
Epochs = 12
# Generate training data
x = torch.unsqueeze(torch.linspace(-1,1,1000),dim=1)
y = x.pow(2) + 0.1 * torch.normal(torch.zeros(*x.size()))
torch_dataset = Data.TensorDataset(x,y)
loader = Data.DataLoader(dataset=torch_dataset,batch_size=Batch_Size,shuffle=True)
class Net2(torch.nn.Module):
def __init__(self):
super(Net2,self).__init__()
self.hidden = torch.nn.Linear(1,20)
self.predict = torch.nn.Linear(20,1)
# Forward pass
def forward(self,x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net_SGD = Net2()
net_Momentum =Net2()
net_RMSprop = Net2()
net_Adam = Net2()
nets = [net_SGD,net_Momentum,net_RMSprop,net_Adam]
opt_SGD = torch.optim.SGD(net_SGD.parameters(),lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(),lr=LR,momentum=0.9)
opt_RMSProp = torch.optim.RMSprop(net_RMSprop.parameters(),lr=LR,alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(),lr=LR,betas=(0.9,0.99))
optimizers = [opt_SGD,opt_Momentum,opt_RMSProp,opt_Adam]
loss_func = torch.nn.MSELoss()
loss_his = [[],[],[],[]]
for epoch in range(Epochs):
for step,(batch_x,batch_y) in enumerate(loader):
for net,opt,l_his in zip(nets,optimizers,loss_his):
output = net(batch_x)
loss = loss_func(output,batch_y)
opt.zero_grad()
loss.backward()
opt.step()
l_his.append(loss.data.numpy()) #loss recoder
labels = ['SGD','Momentum','RMsprop','Adam']
for i ,l_his in enumerate(loss_his):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()
边栏推荐
- OSPF message details - LSA overview
- 分布式事务的实现方案
- Bubble sort [C language]
- FTP file upload file implementation, regularly scan folders to upload files in the specified format to the server, C language to realize FTP file upload details and code case implementation
- 关键字 inline (内联函数)用法解析【C语言】
- I2C bus timing explanation
- [Flink] Flink learning
- Detailed explanation of Union [C language]
- 电商数据分析--用户行为分析
- 第4阶段 Mysql数据库
猜你喜欢
随机推荐
Vert. x: A simple login access demo (simple use of router)
[yarn] CDP cluster yarn configuration capacity scheduler batch allocation
I2C bus timing explanation
机器学习--线性回归(sklearn)
Apprentissage automatique - - régression linéaire (sklearn)
电商数据分析--薪资预测(线性回归)
高通&MTK&麒麟 手机平台USB3.0方案对比
Some concepts often asked in database interview
Togglebutton realizes the effect of switching lights
FTP文件上传文件实现,定时扫描文件夹上传指定格式文件文件到服务器,C语言实现FTP文件上传详解及代码案例实现
RT-Thread 线程的时间片轮询调度
[template] KMP string matching
Analysis of charging architecture of glory magic 3pro
几个关于指针的声明【C语言】
R & D thinking 01 ----- classic of embedded intelligent product development process
2019 Tencent summer intern formal written examination
OSPF message details - LSA overview
荣耀Magic 3Pro 充电架构分析
FreeRTOS 任务函数里面的死循环
MongoDB