当前位置:网站首页>假设检验——《概率论与数理统计》第八章学习笔记
假设检验——《概率论与数理统计》第八章学习笔记
2022-07-05 04:17:00 【物联黄同学】
假设检验——《概率论与数理统计》第八章学习笔记
文章目录
前言
感谢台风暹芭,让我回不去宿舍,被迫在实验室过夜,思来想去,睡不着,恰逢期末考临近,决定写一篇的第八章的学习笔记。
和之前的系列一样,教材不变。内容上,选取第八章的前三节,即假设检验,正态均值,正态方差三个部分的知识点,为什么没有其他内容,因为这次考试大概不会考。
形式上,相比前面的章节写了很多课本的定义,这次我会有更多的个人理解,尽可能直击考点。
MindMap
假设检验
这一节其实就是告诉你假设检验的一些定义,以及对假设检验这一问题的解决过程与步骤。
一些定义
显著性水平
我们用来对检验做衡量的标准,一般在式子中以 α
出现。
检验统计量
Z = X ‾ − μ 0 σ / n Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt n} Z=σ/nX−μ0
原假设 与 备择假设
我们将检验问题叙述成:在显著性水平α下,检验假设:
H 0 : μ = μ 0 , H 1 : μ ≠ μ 0 H_0:\mu =\mu_0, \qquad H_1 : \mu \neq \mu_0 H0:μ=μ0,H1:μ=μ0
H0 为 原假设
, H1 为 备择假设
。
拒绝域
就是在某个区域上取值作为 检验统计量的值时,拒绝 原假设,或者说接受备择假设,这个区域就是拒绝域,而拒绝域的边界点其实就叫 临界点
。
显著性检验
因为检验的依据是样本,所以检验势必会有犯错的可能,这里主要有两种错误:
- H0为真,但是拒绝。
- H1为真,但是接受原假设。
我们显然希望犯这两种错误的概率都小,但是在数理统计中,如果样本容量限定了,则减小犯一类错误的概率减小的同时,另一类的概率往往增大。所以在数理统计中,采取的是对第一类控制,不考虑
第二类。这种检验就是 假设性检验。
双边检验与单边检验
这里其实就是我们在做假设的时候,对于H1,μ可能大于μ0,有可能小于μ0,如果是两种都可能,那就是 双边假设
, 而如果只是其中一种可能,那就是 单边假设
,根据方向又可以分为 左边检验 和 右边检验。对于方向,我的个人理解是看 拒绝域或者备择假设的方向。
个人理解的解题步骤
通过阅读与理解课本的例题,发现了假设检验问题的求解过程:
- 先根据题目确定检验假设。
- 根据参数确定检验统计量。
- 然后根据假设和检验统计量判断是那种假设,然后确定拒绝域。
- 取样,其实就是根据样本观察值判断是否接受原假设。
本篇中所有的总体都是正态总体,针对它的两个参数,均值μ和方差σ^2,有以下两种假设检验。
正态总体均值的假设检验
单个总体
这里根据方差是否已知,又可以分为 Z检验
和 t检验
。
方差已知,Z检验
其实很简单,我们根据假设然后接下来需要检验样本均值是否符合假设,在显著性水平α以及其他参数下,检验统计量为:
Z = X ‾ − μ 0 σ / n Z ∼ N ( μ , σ 2 ) Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt n} \\ Z \sim N(\mu, \sigma^2) Z=σ/nX−μ0Z∼N(μ,σ2)
接下来只需根据是单边假设还是双边假设来求解就可以了。
双边就取α/2,检验统计量的绝对值高于 显著性水平下对应的 正态函数值就拒绝原假设。
方差未知,t检验
这里其实就是 用了样本方差s
来近似替换 总体方差σ,当然这里需要用到t分布。
X ‾ − μ 0 S / n ∼ t ( n − 1 ) \frac{\overline{X} - \mu_0}{S/\sqrt n} \sim t(n-1) S/nX−μ0∼t(n−1)
两个总体——t检验
我们对两个独立的正态总体
N ( μ 1 , σ 2 ) , N ( μ 2 , σ 2 ) N(\mu_1, \sigma^2), N(\mu_2, \sigma^2) N(μ1,σ2),N(μ2,σ2)
方差相同,均值不同,所以可以剔除检验假设:
H 0 : μ 1 − μ 2 = δ , H 1 : μ 1 − μ 2 ≠ δ H_0: \mu_1 - \mu_2 = \delta, \quad H_1:\mu_1 - \mu_2 \neq \delta H0:μ1−μ2=δ,H1:μ1−μ2=δ
所以给出检验统计量:
t = ( X ‾ − Y ‾ ) − δ S w 1 n 1 + 1 n 2 S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 n 2 − 2 t= \frac{(\overline{X} - \overline{Y})- \delta}{S_w\sqrt{\frac1{n_1} + \frac 1{n_2}}} \\ S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S^2_2}{n_1 n_2 - 2} t=Swn11+n21(X−Y)−δSw2=n1n2−2(n1−1)S12+(n2−1)S22
成对数据的检验——t检验
其实这里就是将两组数据对比求差异,然后做检验,我们一般是直接将数据相减后作为一个新的正态总体样本,接下来其实就是单个总体下的情况了。
正态总体方差的假设检验
单个总体
在均值中,我们用到的是Z和t检验,说白了就是用到正态分布
和 t分布
, 但是在求方差的假设检验的时候,其实用到的是
( n − 1 ) S 2 σ 0 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n - 1) σ02(n−1)S2∼χ2(n−1)
两个总体
用到的是F分布
S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \frac{S_1^2/ S_2^2}{\sigma_1^2/ \sigma_2^2} \sim F(n_1-1, n_2 -1) σ12/σ22S12/S22∼F(n1−1,n2−1)
正态总体的检验法表
后话
天亮了,回去睡觉了,这一章结合教材阅读会更好一点。
边栏推荐
- MacBook installation postgresql+postgis
- 长度为n的入栈顺序的可能出栈顺序种数
- 【虚幻引擎UE】打包报错出现!FindPin错误的解决办法
- 在线文本行固定长度填充工具
- Technical tutorial: how to use easydss to push live streaming to qiniu cloud?
- [brush questions] BFS topic selection
- DFS and BFS concepts of trees and graphs
- [phantom engine UE] only six steps are needed to realize the deployment of ue5 pixel stream and avoid detours! (the principles of 4.26 and 4.27 are similar)
- How to get the first few pieces of data of each group gracefully
- 【thingsboard】替换首页logo的方法
猜你喜欢
Rome链分析
How to solve the problem that easycvr changes the recording storage path and does not generate recording files?
About the recent experience of writing questions
Learning notes 8
Threejs Internet of things, 3D visualization of farms (II)
Fuel consumption calculator
Behavior perception system
【UNIAPP】系统热更新实现思路
How does the applet solve the rendering layer network layer error?
About the project error reporting solution of mpaas Pb access mode adapting to 64 bit CPU architecture
随机推荐
10种寻址方式之间的区别
[finebi] the process of making custom maps using finebi
[untitled]
The development of mobile IM based on TCP still needs to keep the heartbeat alive
在线文本行固定长度填充工具
How to remove installed elpa package
Use of vscode software
On the day 25K joined Tencent, I cried
JVM garbage collection
@The problem of cross database query invalidation caused by transactional annotation
Rust blockchain development - signature encryption and private key public key
Use threejs to create geometry, dynamically add geometry, delete geometry, and add coordinate axes
File upload bypass summary (upload labs 21 customs clearance tutorial attached)
Looking back on 2021, looking forward to 2022 | a year between CSDN and me
Threejs realizes the drawing of the earth, geographical location annotation, longitude and latitude conversion of world coordinates threejs coordinates
[moteur illusoire UE] il ne faut que six étapes pour réaliser le déploiement du flux de pixels ue5 et éviter les détours! (4.26 et 4.27 principes similaires)
长度为n的入栈顺序的可能出栈顺序
Network security - record web vulnerability fixes
What is the reason why the webrtc protocol video cannot be played on the easycvr platform?
Technical tutorial: how to use easydss to push live streaming to qiniu cloud?