当前位置:网站首页>C26451: arithmetic overflow: use the operator * on a 4-byte value, and then convert the result to an 8-byte value. To avoid overflow, cast the value to wide type before calling the operator * (io.2)

C26451: arithmetic overflow: use the operator * on a 4-byte value, and then convert the result to an 8-byte value. To avoid overflow, cast the value to wide type before calling the operator * (io.2)

2022-07-05 04:17:00 Miaowei

openGL List of articles

Preface

vs2019 Grammatical errors :
c26451: Arithmetic overflow : Use 4 Operator on byte value *, Then convert the result to 8 Byte value . When calling an operator * You can avoid overflow by previously casting the value to a wide type (io.2)
 Insert picture description here

One 、 The reason for the error

stay c++ Calculation in grammar uses glsl( Shader programming syntax ) Will report a mistake ,

float toRadians(float degrees)
{
    
	return (degrees * 2.f * 3.14 * pai / 360.0f);
}

Two 、 solve

Put the above 2.f Modified into 2.0f

float toRadians(float degrees)
{
    
	return (degrees * 2.0f * 3.14 * pai / 360.0f);
}

Example

#include "glew/glew.h"
#include "glfw/glfw3.h"
#include "glm/glm.hpp"
#include "glm/gtc/matrix_transform.hpp"
#include "glm/gtc/type_ptr.hpp"
#include "camera.h"
#include "Utils.h"
#include "Torus.h"
#include <iostream>
#include <string>
#include <fstream>

using namespace std;

static const float pai = 3.1415926;

float toRadians(float degrees)
{
    
	return (degrees * 2.0f * 3.14 * pai / 360.0f);
}

static const int screen_width = 1920;
static const int screen_height = 1080;

int width = 0;
int height = 0;
float aspect = 0.f;

GLuint renderingProgram = 0;
static const int numVAOs = 1;
static const int numVBOs = 4;
GLuint vao[numVAOs] = {
     0 };
GLuint vbo[numVBOs] = {
     0 };

Torus myTorus(0.5f, 0.2f, 48);
int numTorusVertices = myTorus.getNumVertices();
int numTorusIndices = myTorus.getNumIndices();

float torusLocX = 0.f, torusLocY = 0.f, torusLocZ = 0.f;
Camera camera(glm::vec3(0.f, 0.f, 1.f));
float cameraX = 0.f, cameraY = 0.f, cameraZ = 0.f;

glm::mat4 mMat(1.f), vMat(1.f), pMat(1.f), mvMat(1.f), invTrMat(1.f), rMat(1.f);
glm::vec3 currentLightPos(0.f), transformed(0.f);

float lightPos[3] = {
     0.f };

glm::vec3 lightLoc = glm::vec3(5.f, 2.f, 2.f);
float amt = 0.f;  //y Axis rotation component 

// variable allocation for display
GLuint mvLoc = 0, projLoc = 0, nLoc = 0;
GLuint globalAmbLoc = 0, ambLoc = 0, diffLoc = 0, specLoc = 0, posLoc = 0, mAmbLoc = 0, mDiffLoc = 0, mSpecLoc = 0, mShinLoc = 0;

float lastFrame = 0.f;
float deltaTime = 0.f;


//white light
float globalAmbient[4] = {
     0.7f, 0.7f, 0.7f, 1.f };
float lightAmbient[4] = {
     0.f, 0.f, 0.f, 1.f };
float lightDiffuse[4] = {
     1.f, 1.f, 1.f, 1.f };
float lightSpecular[4] = {
     1.f, 1.f, 1.f, 1.f };

// gold material
float* matAmb = Utils::goldAmbient();
float* matDiff = Utils::goldDiffuse();
float* matSpec = Utils::goldSpecular();
float matShin = Utils::goldShininess();

void installLights(glm::mat4 vMatrix)
{
    
	transformed = glm::vec3(vMatrix * glm::vec4(currentLightPos, 1.f));
	lightPos[0] = transformed.x;
	lightPos[1] = transformed.y;
	lightPos[2] = transformed.z;

	// get the locations of the light and material fields in the shader
	globalAmbLoc = glGetUniformLocation(renderingProgram, "globalAmbient");
	ambLoc = glGetUniformLocation(renderingProgram, "light.ambient");
	diffLoc = glGetUniformLocation(renderingProgram, "light.diffuse");
	specLoc = glGetUniformLocation(renderingProgram, "light.specular");
	posLoc = glGetUniformLocation(renderingProgram, "light.position");
	mAmbLoc = glGetUniformLocation(renderingProgram, "material.ambient");
	mDiffLoc = glGetUniformLocation(renderingProgram, "material.diffuse");
	mSpecLoc = glGetUniformLocation(renderingProgram, "material.specular");
	mShinLoc = glGetUniformLocation(renderingProgram, "material.shininess");

	// set the uniform light and material values in the shader
	glProgramUniform4fv(renderingProgram, globalAmbLoc, 1, globalAmbient);
	glProgramUniform4fv(renderingProgram, ambLoc, 1, lightAmbient);
	glProgramUniform4fv(renderingProgram, diffLoc, 1, lightDiffuse);
	glProgramUniform4fv(renderingProgram, specLoc, 1, lightSpecular);
	glProgramUniform3fv(renderingProgram, posLoc, 1, lightPos);
	glProgramUniform4fv(renderingProgram, mAmbLoc, 1, matAmb);
	glProgramUniform4fv(renderingProgram, mDiffLoc, 1, matDiff);
	glProgramUniform4fv(renderingProgram, mSpecLoc, 1, matSpec);
	glProgramUniform1f(renderingProgram, mShinLoc, matShin);
}

void setupVertices(void)
{
    
	vector<int> ind = myTorus.getIndices();
	vector<glm::vec3> vert = myTorus.getVertices();
	vector<glm::vec2> tex = myTorus.getTexCoords();
	vector<glm::vec3> norm = myTorus.getNormals();

	vector<float> pValues;
	vector<float> tValues;
	vector<float> nValues;
	for (int i=0; i<myTorus.getNumVertices(); i++)
	{
    
		pValues.push_back(vert[i].x);
		pValues.push_back(vert[i].y);
		pValues.push_back(vert[i].z);

		tValues.push_back(tex[i].s);
		tValues.push_back(tex[i].t);

		nValues.push_back(norm[i].x);
		nValues.push_back(norm[i].y);
		nValues.push_back(norm[i].z);	
	}

	glGenVertexArrays(numVAOs, vao);
	glBindVertexArray(vao[0]);

	glGenBuffers(numVBOs, vbo);
	glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	glBufferData(GL_ARRAY_BUFFER, pValues.size() * sizeof(float), &(pValues[0]), GL_STATIC_DRAW);

	glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	glBufferData(GL_ARRAY_BUFFER, tValues.size() * sizeof(float), &(tValues[0]), GL_STATIC_DRAW);

	glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	glBufferData(GL_ARRAY_BUFFER, nValues.size() * sizeof(float), &(nValues[0]), GL_STATIC_DRAW);

	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, ind.size() * sizeof(int), &ind[0], GL_STATIC_DRAW);
}

void init(GLFWwindow* window)
{
    
	renderingProgram = Utils::createShaderProgram("GouraudShaders/vertShader.glsl", "GouraudShaders/fragShader.glsl");
	glfwGetFramebufferSize(window, &width, &height);
	aspect = (float)width / (float)height;
	pMat = glm::perspective(glm::radians(45.f), aspect, 0.01f, 1000.f);

	cameraX = 0.f, cameraY = 0.f, cameraZ = 1.f;
	torusLocX = 0.f; torusLocY = 0.f; torusLocZ = -1.f;

	setupVertices();
}

void display(GLFWwindow* window, double currentTime)
{
    
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
	glClearColor(0.f, 1.f, 1.f, 1.f);

	glUseProgram(renderingProgram);

	mvLoc = glGetUniformLocation(renderingProgram, "mv_matrix");
	projLoc = glGetUniformLocation(renderingProgram, "proj_matrix");
	nLoc = glGetUniformLocation(renderingProgram, "norm_matrix");

	vMat = glm::translate(glm::mat4(1.f), glm::vec3(cameraX, cameraY, -cameraZ));
	mMat = glm::translate(glm::mat4(1.f), glm::vec3(torusLocX, torusLocY, torusLocZ));
	mMat *= glm::rotate(mMat, glm::radians(45.f), glm::vec3(1.f, 0.f, 0.f));

	currentLightPos = glm::vec3(lightLoc.x, lightLoc.y, lightLoc.z);
	amt += 0.5f;
	rMat = glm::rotate(glm::mat4(1.f), glm::radians(amt), glm::vec3(0.f, 0.f, 1.f));
	currentLightPos = glm::vec3(rMat * glm::vec4(currentLightPos, 1.f));

	installLights(vMat);

	mvMat = vMat * mMat;
	/** Why use transpose matrix here ? Because model vertices need to be transformed into visual space , And normals also need to be transformed into visual space .  Apply directly to the normal vector MV  The matrix cannot guarantee that the normal vector is still perpendicular to the object surface . The correct transformation is MV  Inverse transpose matrix of **/
	invTrMat = glm::transpose(glm::inverse(mvMat));


	// Change one uniform The value of a matrix variable or array . To change uniform The position of the variable is determined by location Appoint ,location The value of should be determined by glGetUniformLocation The function returns 
	//  The perspective matrix and MV  The matrix is copied to the corresponding unified variable 
	/* Through consistent variables (uniform Decorated variable ) Reference passes consistent variable values into the rendering pipeline . location : uniform The location of . count :  The number of array elements to load data or the number of matrices to modify . transpose :  Indicates that the matrix is column first (column major) matrix (GL_FALSE) OK first (row major) matrix (GL_TRUE). value :  Point to by count A pointer to an array of elements . */
	glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
	glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));
	glUniformMatrix4fv(nLoc, 1, GL_FALSE, glm::value_ptr(invTrMat));

	glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	// Specifies that the index value at render time is  index  The data format and position of the vertex attribute array 
	/*Parameters index  Specifies the index value of the vertex attribute to modify  size  Specify the number of components per vertex attribute . It has to be for 1、2、3 perhaps 4. The initial value is 4.( Mengwei : Such as position By 3 individual (x, y, z) form , And the color is 4 individual (r, g, b, a)) type  Specify the data type of each component in the array . The available symbolic constants are GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_FIXED,  and  GL_FLOAT, The initial value is GL_FLOAT. normalized  Specify when accessed , Should fixed point data values be normalized (GL_TRUE) Or directly convert to fixed point value (GL_FALSE). stride  Specifies the offset between consecutive vertex attributes . If 0, Then the vertex attribute will be interpreted as : They are closely aligned . The initial value is 0. pointer  Specify a pointer , Point to the first component of the first vertex attribute in the array . The initial value is 0. */		
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	glEnableVertexAttribArray(0);

	glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, 0);
	glEnableVertexAttribArray(1);

	glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, 0);
	glEnableVertexAttribArray(2);

	glEnable(GL_CULL_FACE);
	glFrontFace(GL_CCW);
	glEnable(GL_DEPTH_TEST);
	glDepthFunc(GL_LEQUAL);

	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
	glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);
}

void window_size_callback(GLFWwindow* window, int newWidth, int newHeight)
{
    
	aspect = (float)newWidth / (float)newHeight;
	glViewport(0, 0, newWidth, newHeight);
	pMat = glm::perspective(glm::radians(45.f), aspect, 0.01f, 1000.f);
}

int main(int argc, char** argv)
{
    
	int glfwState = glfwInit();
	if (glfwState == GLFW_FALSE)
	{
    
		cout << "GLFW initialize failed,invoke glfwInit()......Error file:" << __FILE__ << "......Error line:" << __FILE__ << endl;
		glfwTerminate();
		exit(EXIT_FAILURE);
	}

	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 6);
	glfwWindowHint(GLFW_OPENGL_CORE_PROFILE, GLFW_OPENGL_PROFILE);
	glfwWindowHint(GLFW_RESIZABLE, GL_TRUE);

	GLFWwindow* window = glfwCreateWindow(screen_width, screen_height, "Light ads gouraud", nullptr, nullptr);
	if (!window)
	{
    
		cout << "GLFW create window failed,invoke glfwCreateWindow()......Error file:" << __FILE__ << "......Error line:" << __LINE__ << endl;
		glfwTerminate();
		exit(EXIT_FAILURE);
	}

	glfwMakeContextCurrent(window);

	int glewState = glewInit();
	if (glewState != GLEW_OK)
	{
    
		cout << "GLEW initialize failed,invoke glewInit()......Error file:" << __FILE__ << "......Error line:" << __LINE__ << endl;
		glfwTerminate();
		exit(EXIT_FAILURE);
	}

	glfwSwapInterval(1);
	glfwSetWindowSizeCallback(window, window_size_callback);

	init(window);

	while (!glfwWindowShouldClose(window))
	{
    
		display(window, glfwGetTime());
		glfwSwapBuffers(window);
		glfwPollEvents();
	}

	glfwDestroyWindow(window);
	glfwTerminate();
	exit(EXIT_SUCCESS);

	return 0;
}

Running effect

 Insert picture description here

Complete code

The code download

原网站

版权声明
本文为[Miaowei]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202140648147433.html